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Abstract. Checked C is a new effort working toward a memory-safe C.
Its design is distinguished from that of prior efforts by truly being an
extension of C: Every C program is also a Checked C program. Thus, one
may make incremental safety improvements to existing codebases while
retaining backward compatibility. This paper makes two contributions.
First, to help developers convert existing C code to use so-called checked
(i.e., safe) pointers, we have developed a preliminary, automated porting
tool. Notably, this tool takes advantage of the flexibility of Checked C’s
design: The tool need not perfectly classify every pointer, as required
of prior all-or-nothing efforts. Rather, it can make a best effort to con-
vert more pointers accurately, without letting inaccuracies inhibit com-
pilation. However, such partial conversion raises the question: If safety
violations can still occur, what sort of advantage does using Checked
C provide? We draw inspiration from research on migratory typing to
make our second contribution: We prove a blame property that renders
so-called checked regions blameless of any run-time failure. We formalize
this property for a core calculus and mechanize the proof in Coq.

1 Introduction

Vulnerabilities that compromise memory safety are at the heart of many at-
tacks. Spatial safety, one aspect of memory safety, is ensured when any pointer
dereference is always within the memory allocated to that pointer. Buffer over-
runs violate spatial safety, and still constitute a common cause of vulnerability.
During 2012–2018, buffer overruns were the source of 9.7% to 18.4% of CVEs
reported in the NIST vulnerability database [28], constituting the leading single
cause of CVEs.

The source of memory unsafety starts with the language definitions of C and
C++, which render out-of-bounds pointer dereferences “undefined.” Traditional
compilers assume they never happen. Many efforts over the last 20 years have
aimed for greater assurance by proving that accesses are in bounds, and/or pre-
venting out-of-bounds accesses from happening via inserted dynamic checks [26,
25, 30, 3, 15, 1, 2, 4, 7, 6, 8–10, 12, 5, 16, 22, 18]. This paper focuses on Checked C,
a new language design for a memory-safe C [11], currently focused on spatial
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safety. Checked C draws substantial inspiration from prior safe-C efforts but dif-
fers in two key ways, both of which focus on backward compatibility with, and
incremental improvement of, regular C code.

Mixing checked and legacy pointers. First, as outlined in Section 2, Checked
C permits intermixing checked (safe) pointers and legacy pointers. The former
come in three varieties: pointers to single objects Ptr<τ>; pointers to arrays
Array ptr<τ>, and NUL-terminated arrays Nt array ptr<τ>. The latter two

have an associated clause that describes their known length in terms of constants
and other program variables. The specified length is used to either prove pointer
dereferences are safe or, barring that, serves as the basis of dynamic checks
inserted by the compiler.

Importantly, checked pointers are represented as in normal C—no changes
to pointer structure (e.g., by “fattening” a pointer to include its bounds) are
imposed. As such, interoperation with legacy C is eased. Moreover, the fact that
checked and legacy pointers can be intermixed in the same module eases the port-
ing process, including porting via automated tools. For example, CCured [27]
works by automatically classifying existing pointers and compiling them for
safety. This classification is necessarily conservative. For example, if a function
f(p) is mostly called with safe pointers, but once with an unsafe one (e.g., a
“wild” pointer in CCured parlance, perhaps constructed from an int), then the
classification of p as unsafe will propagate backwards, poisoning the classifica-
tion of the safe pointers, too. The programmer will be forced to change the code
and/or pay a higher cost for added (but unnecessary) run-time checks.

On the other hand, in the Checked C setting, if a function uses a pointer
safely then its parameter can be typed that way. It is then up to a caller whose
pointer arguments cannot also be made safe to insert a local cast. Section 5
presents a preliminary, whole-program analysis that utilizes the extra flexibility
afforded by mixing pointers to partially convert a C program to a Checked C
program. On a benchmark suite of five programs totaling more than 200K LoC,
we find that thousands of pointer locations are made more precise than would
have been if using a more conservative algorithm like that of CCured.

Avoiding blame with checked regions. An important question is what “safety”
means in a program with a mix of checked and unchecked pointers. In such a
program, safety violations are still possible. How, then, does one assess that a
program is safer due to checking some, but not all, of its pointers? Providing a
formal answer to this question constitutes the core contribution of this paper.

Unlike past safe-C efforts, Checked C specifically distinguishes parts of the
program that are and may not be fully “safe.” So-called checked regions differ
from unchecked ones in that they can only use checked pointers—dereference
or creation of unchecked pointers, unsafe casts, and other potentially dangerous
constructs are disallowed. Using a core calculus for Checked C programs called
CoreChkC, defined in Section 3, we prove in Section 4 these restrictions are
sufficient to ensure that checked code cannot be blamed. That is, checked code is
internally safe, and any run-time failure can be attributed to unchecked code,
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1 void copy(
2 char∗ dst : byte count(n),
3 const char∗ src : byte count(n),
4 size t n);

(a) copy prototype

1 struct buf
2 {
3 Array ptr<char> dat
4 : count(sz−1);
5 unsigned int len ;/∗ len≤ sz ∗/
6 unsigned int sz ;
7 };

(b) Type definition

1 static char region [MAX]; // unchecked
2 static unsigned int idx = 0;
3

4 Checked void alloc buf(
5 Ptr<struct buf> q,
6 Array ptr<const char> src : count(len) ,
7 unsigned int len)
8 {
9 if ( len > q→ sz) {

10 if ( idx < MAX && len ≤MAX − idx) {
11 Unchecked {
12 q→ buf = &region[idx];
13 q→ sz = len;
14 }
15 idx += len;
16 } else {
17 bug(”out of region memory”);
18 }
19 }
20 copy(q→ buf, src , len) ;
21 q→ len = len;
22 }

(c) Code with checked and unchecked pointers

Fig. 1. Example Checked C code (slightly simplified for readability)

even if that failure occurs in a checked region. This proof has been fully for-
malized in the Coq proof assistant. Our theorem fills a gap in the literature on
migratory typing for languages that, like Checked C, use an erasure semantics,
meaning that no extra dynamic checks are inserted at checked/unchecked code
boundaries [14]. Moreover, our approach is lighter weight than the more sophis-
ticated techniques used by the RustBelt project [17], and constitutes a simpler
first step toward a safe, mixed-language design. We say more in Section 6.

2 Overview of Checked C

We begin by presenting a brief overview of Checked C, using the example in
Figure 1. For more about the language see Elliott et al [11].

Checked pointers. As mentioned in the introduction, Checked C supports three
varieties of checked (safe) pointers: pointers to single objects Ptr<τ>; pointers
to arrays Array ptr<τ>, and NUL-terminated arrays Nt array ptr<τ>. The dat

field of struct buf, defined in Figure 1(b), is an Array ptr<char>; its length is
specified by sz field in the same struct, as indicated by the count annotation.
Nt array ptr<τ>types are similar. The q argument to the alloc buf function in

Figure 1(c) is Ptr<struct buf>. This function overwrites the contents of q with
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those in the second argument src , an array whose length is specified by the
third argument, len. Variables with checked pointer types or containing checked
pointers must be initialized when they are declared.

Checked arrays. Checked C also supports a checked array type, which is des-
ignated by prefixing the dimension of an array declaration with the keyword
Checked. For example, int arr Checked[5] declares a 5-element integer array

where accesses are always bounds checked. A checked array of τ implicitly con-
verts to an Array ptr<τ> when accessing it. In our example, the array region

has an unchecked array type because the Checked keyword is omitted.

Checked and unchecked regions. Returning to alloc buf : If q→ buf is too small
( len > q→ sz) to hold the contents of src , the function allocates a block from
the static region array, whose free area starts at index idx. Designating a checked
Array ptr<char> from a pointer into the middle of the (unchecked) region array is

not allowed in checked code, so it must be done within the designated Unchecked

block. Within such blocks the programmer has the full freedom of C, along with
the ability to create and use checked pointers. Checked code, as designated by
the Checked annotation (e.g., as on the alloc buf function or on a block nested
within unchecked code) may not use unchecked pointers or arrays. It also may
not define or call functions without prototypes and variable argument functions.

Interface types. Once alloc buf has allocated q→ dat it calls copy to transfer the
data into it, from src . Checked C permits normal C functions, such as those in
an existing library, to be given an interface type. This is the type that Checked C
code should use in a checked region. In an unchecked region, either the original
type or the interface type may be used. This allows the function to be called with
unchecked types or checked types. For copy, this type is shown in Figure 1(a).

Interface types can also be attached to definitions within a Checked C file,
not just prototypes declared for external libraries. Doing so permits the same
function to be called from an unchecked region (with either checked or unchecked
types) or a checked region (there it will always have the checked type). For ex-
ample, if we wanted alloc buf to be callable from unchecked code with unchecked
pointers, we could define its prototype as

1 void alloc buf (
2 struct buf ∗q : itype ( Ptr<struct buf>),
3 const char ∗src : itype ( Array ptr<const char>) count(len),
4 unsigned int len) ;

Implementation details. Checked C is implemented as an extension to the Clang/
LLVM compiler. The compiler inserts run-time checks for the evaluation of lvalue
expressions whose results are derived from checked pointers and that will be used
to access memory. Accessing a Ptr<τ>requires a null check, while accessing an
Array ptr<τ>requires both null and bounds checks. The code for these checks

is handed to LLVM, which we allow to remove checks if it can prove they will
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Mode m ::= c | u
Word types τ ::= int | ptrmω
Types ω ::= τ | struct T | array n τ
Expressions e ::= nτ | x | let x = e1 in e2 | malloc@ω | (τ)e

| e1 + e2 | &e→f | ∗e | ∗e1 = e2 | unchecked e
Structdefs D ∈ T ⇀ fs
Fields fs ::= τ f | τ f; fs

Fig. 2. CoreChkC Syntax

always pass. In general, such checks are the only source of Checked C run-time
overhead. Preliminary experiments on some small, pointer-intensive benchmarks
show running time overhead to be around 8.6%, on average [11].

3 Formalism: CoreChkC

This section presents a formal language CoreChkC that models the essence
of Checked C. The language is designed to be simple but nevertheless highlight
Checked C’s key features: checked and unchecked pointers, and checked and
unchecked code blocks. We prove our key theoretical result—checked code cannot
be blamed for a spatial safety violation—in the next section.

3.1 Syntax

The syntax of CoreChkC is presented in Figure 2. Types τ classify word-
sized objects while types ω also include multi-word objects. The type ptrmω
types a pointer, where m identifies its mode: mode c identifies a Checked C safe
pointer, while mode u represents an unchecked pointer. In other words ptrcτ is
a checked pointer type Ptr<τ> while ptruτ is an unchecked pointer type τ∗.
Multiword types ω include struct records, and arrays of type τ having size n,
i.e., ptrcarray n τ represents a checked array pointer type Array ptr<τ> with
bounds n. We assume structs are defined separately in a map D from struct
names to their constituent field definitions.

Programs are represented as expressions e; we have no separate class of pro-
gram statements, for simplicity. Expressions include (unsigned) integers nτ and
local variables x. Constant integers n are annotated with type τ to indicate
their intended type. As in an actual implementation, pointers in our formalism
are represented as integers. Annotations help formalize type checking and the
safety property it provides; they have no effect on the semantics except when τ
is a checked pointer, in which case they facilitate null and bounds checks. Vari-
ables x, introduced by let-bindings let x = e1 in e2, can only hold word-sized
objects, so all structs can only be accessed by pointers.

Checked pointers are constructed using malloc@ω, where ω is the type (and
size) of the allocated memory. Thus, malloc@int produces a pointer of type
ptrcint while malloc@(array 10 int) produces one of type ptrc(array 10 int).
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Heap H ∈ Z⇀ Z× τ
Result r ::= e | Null | Bounds
Contexts E ::= | let x = E in e | E + e | n+ E

| &E→f | (τ)E | ∗E | ∗E= e | ∗n=E | unchecked E

Fig. 3. Semantics Definitions

Unchecked pointers can only be produced by the cast operator, (τ)e, e.g., by do-
ing (ptruint)malloc@int. Casts can also be used to coerce between integer and
pointer types and between different multi-word types.

Pointers are read via the ∗ operator, and assigned to via the = operator. To
read or write struct fields, a program can take the address of that field and read
or write that address, e.g., x→f is equivalent to ∗(&x→f). To read or write an
array, the programmer can use pointer arithmetic to access the desired element,
e.g., x[i] is equivalent to ∗(x+ i).

By default, CoreChkC expressions are assumed to be checked. Expression
e in unchecked e is unchecked, giving it additional freedom: Checked pointers
may be created via casts, and unchecked pointers may be read or written.

Design Notes. CoreChkC leaves out many interesting C language features. We
do not include an operation for freeing memory, since this paper is concerned
about spatial safety, not temporal safety. CoreChkC models statically sized
arrays but supports dynamic indexes; supporting dynamic sizes is interesting but
not meaningful enough to justify the complexity it would add to the formalism.
Making ints unsigned simplifies handling pointer arithmetic. We do not model
control operators or function calls, whose addition would be straightforward.4

CoreChkC does not have a checked e expression for nesting within unchecked

expressions, but supporting it would be easy.

3.2 Semantics

Figure 4 defines the small-step operational semantics for CoreChkC expressions
in the form of judgment H; e −→m H; r. Here, H is a heap, which is a partial
map from integers (representing pointer addresses) to type-annotated integers
nτ . Annotation m is the mode of evaluation, which is either c for checked mode
or u for unchecked mode. Finally, r is a result, which is either an expression e,
Null (indicating a null pointer dereference), or Bounds (indicating an out-of-
bounds array access). An unsafe program execution occurs when the expression
reaches a stuck state — the program is not an integer nτ , and yet no rule applies.
Notably, this could happen if trying to dereference a pointer n that is actually
invalid, i.e., H(n) is undefined.

4 Function calls f(e′) can be modeled by let x = e1 in e2, where we can view
x as function f ’s parameter, e2 as its body, and e1 as its actual argument. Calls
to unchecked functions from checked code can thus be simulated by having an
unchecked e expression for e2.
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E-Binop H;nτ11 + nτ22  H;nτ33 where n3 = n1 + n2

τ1 =ptrc(array l τ) ∧ n1 6= 0 ⇒
τ3 = ptrc(array (l − n2) τ)

τ1 6= ptrc(array l τ) ⇒ τ3 = τ1

E-Cast H; (τ)nτ
′
 H;nτ

E-Deref H; ∗nτ  H;nτ11 where nτ11 = H(n)
∀ l τ ′. τ = ptrc(array l τ ′) ⇒ l > 0

E-Assign H; ∗nτ =nτ11  H ′;nτ11 where H(n) defined
∀ l τ ′. τ = ptrc(array l τ ′) ⇒ l > 0
H ′ = H[n 7→ nτ11 ]

E-Amper H; &nτ→fi  H;nτ00 where τ = ptrm
′
struct T

D(T ) = τ1f1; ...; τkfk for 1 ≤ i ≤ k
m′ 6= c ∨ n 6= 0 ⇒
n0 = n+ i ∧ τ0 = ptrm

′
τi

E-Malloc H; malloc@ω  H ′, nptrcω
1 where

sizeof(ω) = k and k > 0
n1...nk consecutive
n1 6= 0 and H(n1)...H(nk) undefined
τ1, ..., τk = types(D,ω)
H ′ = H[n1 7→ 0τ1 ]...[nk 7→ 0τk ]

E-Let H; let x = nτ in e  H; e[x 7→ nτ ]
E-Unchecked H; unchecked nτ  H;nτ

X-DerefOOB H; ∗nτ  H; Bounds where τ = ptrc(array 0 τ1)
X-AssignOOB H; ∗nτ =nτ11  H; Bounds where τ = ptrc(array 0 τ1)
X-DerefNull H; ∗0τ  H; Null where τ = ptrcω

X-AssignNull H; ∗0τ =nτ
′

1  H; Null where τ = ptrc(array l τ1)
X-AmperNull H; &0τ→fi  H; Null where τ = ptrcstruct T

X-BinopNull H; 0τ + nτ
′
 H; Null where τ = ptrc(array l τ1)

C-Exp
e = E[e0] m = mode(E) ∨m = u

H; e0  H ′; e′0 e′ = E[e′0]

H; e −→m H ′; e′

C-Halt
e = E[e0] m = mode(E) ∨m = u

H; e0  H ′; r where r = Null or r = Bounds

H; e −→m H ′; r

mode( ) = c
mode(unchecked E) = u
mode(let x = E in e) =

mode(E + e) =
mode(n+ E) =
mode(&E→f) =
mode((τ)E) =
mode(∗E) =
mode(∗E= e) =
mode(∗n=E) = mode(E)

Fig. 4. Operational semantics
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The semantics is defined in the standard manner using evaluation contexts E.
We write E[e0] to mean the expression that results from substituting e0 into the
“hole” ( ) of context E. Rule C-Exp defines normal evaluation. It decomposes an
expression e into a context E and expression e0 and then evaluates the latter via
H; e0  H ′; e′0, discussed below. The evaluation mode m is constrained by the
mode(E) function, also given in Figure 4. The rule and this function ensure that
when evaluation occurs within e in some expression unchecked e, then it does
so in unchecked mode u; otherwise it may be in checked mode c. Rule C-Halt

halts evaluation due to a failed null or bounds check.

The rules prefixed with E- are those of the computation semantics H; e0  
H ′; e′0. The semantics is implicitly parameterized by struct map D. The rest of
this section provides additional details for each rule, followed by a discussion of
CoreChkC’s type system.

Rule E-Binop produces an integer n3 that is the sum of arguments n1 and
n2. As mentioned earlier, the annotations τ on literals nτ indicate the type the
program has ascribed to n. When a type annotation is not a checked pointer,
the semantics ignores it. In the particular case of E-Binop for example, addition
nτ11 +nτ22 ignores τ1 and τ2 when τ1 is not a checked pointer, and simply annotates
the result with it. However, when τ is a checked pointer, the rules use it to
model bounds checks; in particular, dereferencing nτ where τ is ptrc(array l τ0)
produces Bounds when l = 0 (more below). As such, when n1 is a non-zero,
checked pointer to an array and n2 is an int, result n3 is annotated as a pointer
to an array with its bounds suitably updated.5 Checked pointer arithmetic on 0
is disallowed; see below.

Rules E-Deref and E-Assign confirm the bounds of checked array pointers:
the length l must be positive for the dereference to be legal. The rule permits the
program to proceed for non-checked or non-array pointers (but the type system
will forbid them).

Rule E-Amper takes the address of a struct field, according to the type
annotation on the pointer, as long the pointer is not zero or not checked.

Rule E-Malloc allocates a checked pointer by finding a string of free heap
locations and initializing each to 0, annotated to the appropriate type. Here,
types(D,ω) returns k types, where these are the types of the corresponding
memory words; e.g., if ω is a struct then these are the types of its fields (looked
up in D), while if ω is an array of length k containing values of type τ , then
we will get back k τ ’s. We require k 6= 0 or the program is stuck (a situation
precluded by the type system).

Rule E-Let uses a substitution semantics for local variables; notation e[x 7→
nτ ] means that all occurrences of x in e should be replaced with nτ .

Rule E-Unchecked returns the result of an unchecked block.

Rules with prefix X- describe failures due to bounds checks and null checks
on checked pointers. These are analogues to the E-Assign, E-Deref, E-Binop,

5 Here, l−n2 is natural number arithmetic: if n2 > l then l−n2 = 0. This would have
to be adjusted if the language contained subtraction, or else bounds information
would be unsound.
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T-Var
x : τ ∈ Γ

Γ ;σ `m x : τ

T-VConst
nτ ∈ σ

Γ ;σ `m nτ : τ

T-Let
Γ ;σ `m e1 : τ1 Γ, x : τ1;σ `m e2 : τ

Γ ;σ `m let x = e1 in e2 : τ

T-Base
τ = int ∨ τ = ptr

uω ∨ n = 0 ∨
τ = ptr

c(array 0 τ ′)

Γ ;σ `m nτ : τ

T-PtrC
τ = ptr

cω τ0, ..., τj−1 = types(D,ω)
Γ ;σ, nτ `m H(n+ k) : τk 0 ≤ k < j

Γ ;σ `m nτ : τ

T-Amper
Γ ;σ `m e : ptrmstruct T

D(T ) = ...; τf f ; ...

Γ ;σ `m &e→f : ptrmτf

T-BinopInt
Γ ;σ `m e1 : int
Γ ;σ `m e2 : int

Γ ;σ `m e1 + e2 : int

T-Malloc
sizeof(ω) > 0

Γ ;σ `m malloc@ω : ptrcω

T-Unchecked
Γ ;σ `u e : τ

Γ ;σ `m unchecked e : τ

T-Cast
m = c ⇒ τ 6= ptr

cω (for any ω) Γ ;σ `m e : τ ′

Γ ;σ `m (τ)e : τ

T-Deref

Γ ;σ `m e : ptrm
′
ω

ω = τ ∨ ω = array n τ
m′ = u⇒ m = u

Γ ;σ `m ∗e : τ

T-Index

Γ ;σ `m e1 : ptrm
′
(array n τ)

Γ ;σ `m e2 : int
m′ = u⇒ m = u

Γ ;σ `m ∗(e1 + e2) : τ

T-Assign

Γ ;σ `m e1 : ptrm
′
ω Γ ;σ `m e2 : τ

ω = τ ∨ ω = array n τ
m′ = u⇒ m = u

Γ ;σ `m ∗e1 = e2 : τ

T-IndAssign

Γ ;σ `m e1 : ptrm
′
(array n τ)

Γ ;σ `m e2 : int Γ ;σ `m e3 : τ
m′ = u⇒ m = u

Γ ;σ `m ∗(e1 + e2) = e3 : τ

Fig. 5. Typing

and E-Amper cases. The first two rules indicate a bounds violation for size-zero
array pointers. The next two indicate an attempt to dereference a null pointer.
The last two indicate an attempt to construct a checked pointer from a null
pointer via field access or pointer arithmetic.

3.3 Typing

The typing judgment Γ ;σ `m e : τ says that expression e has type τ under
environment Γ and scope σ when in mode m. A scope σ is an additional en-
vironment consisting of a set of literals; it is used to type cyclic structures (in
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Rule T-PtrC, below) that may arise during program evaluation. The heap H
and struct map D are implicit parameters of the judgment; they do not appear
because they are invariant in derivations. unchecked expressions are typed in
mode u; otherwise we may use either mode.

Γ maps variables x to types τ , and is used in rules T-Var and T-Let as
usual. Rule T-Base ascribes type τ to literal nτ . This is safe when τ is int

(always). If τ is an unchecked pointer type, a dereference is only allowed by
the type system to be in unchecked code (see below), and as such any sort of
failure (including a stuck program) is not a safety violation. When n is 0 then
τ can be anything, including a checked pointer type, because dereferencing n
would (safely) produce Null. Finally, if τ is ptrc(array 0 τ ′) then dereferencing
n would (safely) produce Bounds.

Rule T-PtrC is perhaps the most interesting rule of CoreChkC. It ensures
checked pointers of type ptrcω are consistent with the heap, by confirming the
pointed-to heap memory has types consistent with ω, recursively. When doing
this, we extend σ with nτ to properly handle cyclic heap structures; σ is used
by RuleT-VConst.

To make things more concrete, consider the following program that constructs
a cyclic cons cell, using a standard single-linked list representation:

D(node) = int val ; ptrc struct node

let p = malloc@struct node in ∗(&p→next) = p

After executing the program above, the heap would look something like the
following, where n is the integer value of p. That is, the n-th location of the
heap contains 0 (the default value for field val picked by malloc), while the
(n+ 1)-th location, which corresponds to field next , contains the literal n.

Heap . . . 0 n . . .

Loc n

How can we type the pointer nptr
cstruct node in this heap without getting an

infinite typing judgment?

Γ ;σ `c nptr
cstruct node : ptrcstruct node

That’s where the scope comes in, to break the recursion. In particular, using
Rule T-PtrC and struct node’s definition, we would need to prove two things:

Γ ;σ, nptr
cstruct node `c H(n+ 0) : int

and
Γ ;σ, nptr

cstruct node `c H(n+ 1) : ptrcstruct node

Since H(n+ 0) = 0, as malloc zeroes out its memory, we can trivially prove the
first goal using Rule T-Base. However, the second goal is almost exactly what
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we set out to prove in the first place! If not for the presence of the scope σ, the
proof the n is typeable would be infinite! However, by adding nptr

cstruct node to
the scope, we are essentially assuming it is well-typed to type its contents, and
the desired result follows by Rule T-VConst.6

A key feature of T-PtrC is that it effectively confirms that all pointers
reachable from the given one are consistent; it says nothing about other parts of
the heap. So, if a set of checked pointers is only reachable via unchecked pointers
then we are not concerned whether they are consistent, since they cannot be
directly dereferenced by checked code.

Back to the remaining rules, T-Amper and T-BinopInt are unsurprising.
Rule T-Malloc produces checked pointers so long as the pointed-to type ω is
not zero-sized, i.e., is not array 0 τ . Rule T-Unchecked introduces unchecked
mode, relaxing access rules. Rule T-Cast enforces that checked pointers cannot
be cast targets in checked mode.

Rules T-Deref and T-Assign type pointer accesses. These rules require un-
checked pointers only be dereferenced in unchecked mode. Rule T-Index permits
reading a computed pointer to an array, and rule T-IndAssign permits writing
to one. These rules are not strong enough to permit updating a pointer to an
array after performing arithmetic on it. In general, Checked C’s design permits
overcoming such limitations through selective use of casts in unchecked code.
(That said, our implementation is more flexible in this particular case.)

4 Checked Code Cannot be Blamed

Our main formal result is that well-typed programs will never fail with a spatial
safety violation that is due to a checked region of code, i.e., checked code cannot
be blamed. This section presents the main result and outlines its proof. We have
mechanized the full proof using the Coq proof assistant. The development is
roughly 3500 lines long, including comments. We can make the development
available upon request (and will release it publicly).

4.1 Progress and Preservation

The blame theorem is proved using the two standard syntactic type-safety no-
tions of Progress and Preservation, adapted for CoreChkC. Progress indicates
that a well-typed program either is a value, can take a step (in either mode), or
else is stuck in unchecked code. A program is in unchecked mode if its expression
e only type checks in mode u, or its (unique) context E has mode u.

Theorem 1 (Progress). If · `m e : τ (under heap H) then one of the following
holds:

6 For readers familiar with coinduction [29], this proof technique is similar: to prove
a coinductive property P one would assume P but need to use it productively in a
subterm; similarly here, we can assume a pointer is well-typed when we attempt to
type heap locations that are reachable from it.
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– e is an integer nτ

– There exists H ′, m′, and r such that H; e −→m′
H ′; r where r is either some

e′, Null, or Bounds.
– m = u or e = E[e′′] and mode(E) = u for some E, e′′.

Preservation indicates that if a well-typed program in checked mode takes a
checked step then the resulting program is also well-typed in checked mode.

Theorem 2 (Preservation). If Γ ; · `c e : τ (under a heap H) and H; e −→c

H ′; r (for some H ′, r), then and r = e′ implies H B H ′ and Γ ; · `c e′ : τ (under
heap H ′).

We write H B H ′ to mean that for all nτ if · `c nτ : τ under H then · `c nτ : τ
under H ′ as well.

The proofs of both theorems are by induction on the typing derivation. The
Preservation proof is the most delicate, particularly ensuring H B H ′ despite
the creation or modification of cyclic data structures. Crucial to the proof were
two lemmas dealing with the scope, weakening and strengthening.

The first lemma, scope weakening, allows us to arbitrarily extend a scope
with any literal nτ00 .

Lemma 1 (Weakening). If Γ ;σ `m nτ : τ then Γ ;σ, nτ00 `m nτ : τ , for all
nτ00 .

Intuitively, this lemma holds because if a proof of Γ ;σ `m nτ : τ relies on the
rule T-VConst, then that nτ11 ∈ σ for some nτ11 . But then nτ11 ∈ (σ, nτ00 ) as well.
Importantly, the scope σ is a set of nτ and not a map from n to τ . As such, if
n′τ

′
is already present in σ, adding n′τ

′
0 will not clobber it. Allowing the same

literal to have multiple types is of practical importance. For example a pointer
n to a struct could be annotated with the type of the struct, or the type of the
first field of the struct, or int; all may safely appear in the environment.

Consider the proof that nptr
cstruct node is well typed for the heap given in

Section 3.3. After applying Rule T-PtrC, we used the fact that nptr
cstruct node ∈

σ, nptr
cstruct node to prove that the next field of the struct is well typed. If we

were to replace σ with another scope σ, nτ00 for some typed literal nτ00 (and
as a result any scope that is a superset of σ), the inclusion nptr

cstruct node ∈
σ, nτ00 , n

ptrcstruct node still holds and our pointer is still well-typed.
Conversely, the second lemma, scope strengthening, allows us to remove a

literal from a scope, if that literal is well typed in an empty context.

Lemma 2 (Strengthening). If Γ ;σ `m nτ11 : τ1 and Γ ; · `m nτ22 : τ2, then
Γ ;σ\{nτ22 } `m nτ11 : τ1.

Informally, if the fact that nτ22 is in the scope is used in the proof of well-typedness
of nτ11 to prove that nτ22 is well-typed for some scope σ, then we can just use the
proof that it is well-typed in an empty scope, along with weakening, to reach
the same conclusion.
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Looking back again at the proof of the previous section, we know that

Γ ; · `c n : ptrcstruct node
and

Γ ;σ, nptr
cstruct node `c &n→next : ptrcstruct node

While the proof of the latter fact relies on nptr
cstruct node being in scope, that

would not be necessary if we knew (independently) that it was well-typed. That
would essentially amount to unrolling the proof by one step.

4.2 Blame

With progress and preservation we can prove a blame theorem: Only unchecked
code can be blamed as the ultimate reason for a stuck program.

Theorem 3 (Checked code cannot be blamed). Suppose · `c e : τ (under
heap H) and there exists Hi, mi, and ei for 1 ≤ i ≤ k such that H; e −→m1

H1; e1 −→m2 ... −→mk Hk; ek. If Hk; ek is stuck then the source of the issue is
unchecked code.

Proof. Suppose · `c ek : τ (under heap Hk). By Progress, the only way the
Hk; ek can be stuck is if ek = E[e′′] and mode(E) = u; i.e., the term’s redex is
in unchecked code. Otherwise Hk; ek is not well typed, i.e., · 6`c ek : τ (under
heap Hk). As such, one of the steps of the evaluation was in unchecked code,
i.e., there must exist some i where 1 ≤ i ≤ k and mi = u. This is because, by
Preservation, a well-typed program in checked mode that takes a checked step
always leads to a well-typed program in checked mode.

This theorem means that a code reviewer can focus on unchecked code regions,
trusting that checked ones are safe.

5 Automatic Porting

Porting legacy code to use Checked C’s features can be tedious and time con-
suming. To assist the process, we developed a source-to-source translator called
checked-c-convert that discovers some safely-used pointers and rewrites them to
be checked. This algorithm is based on one used by CCured [27], but exploits
Checked C’s allowance of mixing checked and unchecked pointers to make less
conservative decisions.

The checked-c-convert translator works by (1) traversing a program’s ab-
stract syntax tree (AST) to generate constraints based on pointer variable dec-
laration and use; (2) solving those constraints; and (3) rewriting the program.
These rewrites consist of promoting some declared pointer types to be checked,
some parameter types to be bounds-safe interfaces, and inserting some casts.
checked-c-convert aims to produce a well-formed Checked C program whose
changes from the original are minimal and unsurprising. A particular challenge
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is to preserve syntactic structure of the program. A rewritten program should be
recognizable by the author and it should be usable as a starting point for both
the development of new features and additional porting. The checked-c-convert
tool is implemented as a clang libtooling application and is freely available.

5.1 Constraint logic and solving

The basic approach is to infer a qualifier qi for each defined pointer variable
i. Inspired by CCured’s approach [27], qualifiers can be either PTR, ARR and
UNK, ordered as a lattice PTR < ARR < UNK. Those variables with inferred
qualifier PTR can be rewritten into Ptr<τ> types, while those with UNK are
left as is. Those with the ARR qualifier are eligible to have Array ptr<τ> type.
For the moment we only signal this fact in a comment and do not rewrite because
we cannot always infer proper bounds expressions.

Qualifiers are introduced at each pointer variable declaration, i.e., parameter,
variable, field, etc. Constraints are introduced as a pointer is used, and take one
of the following forms:

qi = PTR qi 6= PTR
qi = ARR qi 6= ARR
qi = UNK qi 6= UNK
qi = qj qi = ARR⇒ qj = ARR

qi = UNK ⇒ qj = UNK

An expression that performs arithmetic on a pointer with qualifier qi, either
via + or [], introduces a constraint qi = ARR. Assignments between pointers
introduce aliasing constraints of the form qi = qj . Casts introduce implication
constraints based on the relationship between the sizes of the two types. If the
sizes are not comparable, then both constraint variables in an assignment-based
cast are constrained to UNK via an equality constraint. One difference from
CCured is the use of negation constraints, which are used to fix a constraint
variable to a particular Checked C type (e.g., due to an existing Ptr<τ> anno-
tation). These would cause problems for CCured, as they might introduce unre-
solvable conflicts. But Checked C’s allowance of checked and unchecked code can
resolve them using explicit casts and bounds-safe interfaces, as discussed below.

One problem with unification-based analysis is that a single unsafe use might
“pollute” the constraint system by introducing an equality constraint to UNK
that transitively constrains unified qualifiers to UNK as well. For example, cast-
ing a struct pointer to a unsigned char buffer to write to the network would cause
all transitive uses of that pointer to be unchecked. The tool takes advantage of
Checked C’s ability to mix checked and unchecked pointers to solve this prob-
lem. In particular, constraints for each function are solved locally, using separate
qualifier variables for each external function’s declared parameters.

5.2 Algorithm

Our modular algorithm runs as follows:
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1. The AST for every compilation unit is traversed and constraints are gen-
erated based on the uses of pointer variables. Each pointer variable x that
appears at a physical location in the program is given a unique constraint
variable qi at the point of declaration. Uses of x are identified with the con-
straint variable created at the point of declaration. A distinction is made
for parameter and return variables depending on if the associated function
definition is a declaration or a definition:

– Declaration: There may be multiple declarations. The constraint vari-
ables for the parameters and return values in the declarations are all
constrained to be equal to each other. At call sites, the constraint vari-
ables used for a function’s parameters and return values come from those
in the declaration, not the definition (unless there is no declaration).

– Definition: There will only be one definition. These constraint variables
are not constrained to be equal to the variables in the declarations. This
enables modular (per function) reasoning.

2. After the AST is traversed, the constraints are solved using a fast, unification-
focused algorithm [27]. The result is a set of satisfying assignments for con-
straint variables qi.

3. Then, the AST is re-traversed. At each physical location associated with a
constraint variable, a re-write decision is made based on the value of the con-
straint variable. These physical locations are variable declaration statements,
either as members of a struct, function variable declarations, or parameter
variable declarations. There is a special case, which is any constraint variable
appearing at a parameter position, either at a function declaration/defini-
tion, or, a call site. That case is discussed in more detail next.

4. All of the re-write decisions are then applied to the source code.

5.3 Resolving conflicts

Defining distinct constraint variables for function declarations, used at call-sites,
and function definitions, used within that function, can result in conflicting so-
lutions. If there is a conflict, then the declaration’s solution is safer than the
definition, or the definition’s is safer than the declaration’s. Which case we are
in can be determined by considering the relationship between the variables’ val-
uations in the qualifier lattice. There are three cases:

– No imbalance: In this case, the re-write is made based on the value of the
constraint variable in the solution to the unification

– Declaration (caller) is safer than definition (callee): In this case, there is
nothing to do for the function, since the function does unknown things with
the pointer. This case will be dealt with at the call site by inserting a cast.

– Decalaration (caller) is less safe than definition (callee): In this case, there
are call sites that are unsafe, but the function itself is fine. We can re-write
the function declaration and definition with a bounds-safe interface.
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Example: caller is safer than callee: Consider a function that makes unsafe use
of the parameter within the body of the function, but a callee of the function
passes an argument that is only ever used safely.

1 void f( int ∗a) {
2 ∗( int ∗∗)a = a;
3 }
4

5 void caller (void) {
6 int q = 0;
7 int ∗p = &q;
8 f(p);
9 }

Here, we cannot make a safe since its use is outside Checked C’s type system.
Relying on a unification-only approach, this fact would poison all arguments
passed to f too, i.e., p in caller . This is unfortunate, since p is used safely inside
of caller . Our algorithm remedies this situation by doing the conversion and
inserting a cast:

1

2 void caller (void) {
3 int q = 0;
4 Ptr<int> p = &q;
5 f (( int∗)p);
6 }

The presence of the cast indicates to the programmer that perhaps there is
something in f that should be investigated.

Example: caller less safe than callee: Now consider a function that makes safe
use of the parameter within the body of the function, but a caller of the function
might perform casts or other unsafe operations on an argument it passes.

1 void f( int ∗a) {
2 ∗a = 0;
3 }
4

5 void caller (void) {
6 int q = 0;
7 f1(&q);
8 f1 ((( int∗) 0x8f8000));
9 }

If considered in isolation, the function f is safe and the parameter could
be rewritten to Ptr< int>. However, it is used from an unsafe context. In an
approach with pure unification, like CCured, this unsafe use at the call-site would
pollute the classification at the definition. Our algorithm considers solutions and
call sites and definitions independently. Here, the uses of f in caller are less
safe than those in the f’s definition so the rewriter would insert a bounds-safe
interface for f:
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Table 1. Number of pointer declarations converted through automated porting

Program # of * % Ptr Arr. Unk. Casts(Calls) Ifcs(Funcs) LOC

zlib 1.2.8 4514 46% 5% 49% 8 (300) 464 (1188) 17388
sqlite 3.18.1 34230 38% 3% 59% 2096 (29462) 9132 (23305) 106806
parson 1132 35% 1% 64% 3 (378) 340 (454) 2320
lua 5.3.4 15114 23% 1% 76% 175 (1443) 784 (2708) 13577
libtiff 4.0.6 34518 26% 1% 73% 495 (1986) 1916 (5812) 62439

1 void f( int ∗a : itype ( Ptr<int>)) {
2 ∗a = 0;
3 }

The itype syntax indicates that a can be supplied by the caller as either an
int∗ or a Ptr<τ>, but the function body will treat a as a Ptr<τ>. (See Section 2
for more on interface types.)

This approach has advantages and disadvantages. It favors making the fewest
number of modifications across a project. An alternative to using interface types
would be to change the parameter type to a Ptr<τ>directly, and then insert
casts at each call site. This would tell the programmer where potentially bogus
pointer values were, but would also increase the number of changes made. Our
approach does not immediately tell the programmer where the pointer changes
need to be made. However, the Checked C compiler will do that if the program-
mer takes a bounds-safe interface and manually converts it into a non-interface
Ptr<τ>type. Every location that would require a cast will fail to type check,

signaling to the programmer to have a closer look.

5.4 Experimental Evaluation

We carried out a preliminary experimental evaluation of the efficacy of checked-
c-convert. To do so, we ran it on five targets—programs and libraries—and
recorded how many pointer types the rewriter converted and how many casts
were inserted. We chose these targets as they constitute legacy code used in
commodity systems, and in security-sensitive contexts.

Running checked-c-convert took no more than 30 minutes to run, for each
target. Table 1 contains the results. The first and last column indicate the target,
its version, and the lines of code it contains (per cloc). The second column (# of
*) counts the number of pointer definitions or declarations in the program, i.e.,
places that might get rewritten when porting. The next three columns (% Ptr,
Arr., Unk.) indicate the percentages of these that were determined to be PTR,
ARR, or UNK, respectively, where only those in % Ptr induce a rewriting
action. The results show that a fair number of variables can be automatically
rewritten as safe, single pointers ( Ptr<τ>). After investigation, there are usually
two reasons that a pointer cannot be replaced with a Ptr<τ>: either some
arithmetic is performed on the pointer, or it is passed as a parameter to a
library function for which a bounds-safe interface does not exist.
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The next two columns (Casts(Calls), Ifcs(Funcs)) examine how our rewrit-
ing algorithm takes advantage of Checked C’s support for incremental conver-
sion. In particular, column 6 (Casts(Calls)) counts how many times we cast a
safe pointer at the call site of a function deemed to use that pointer unsafely; in
parentheses we indicate the total number of call sites in the program. Column 7
(Ifcs(Funcs)) counts how often a function definition or declaration has its type
rewritten to use an interface type, where the total declaration/definition count is
in parentheses. This rewriting occurs when the function itself uses at least one of
its parameters safely, but at least one caller provides an argument that is deemed
unsafe. Both columns together represent an improvement in precision, compared
to unification-only, due to Checked C’s focus on backward compatibility.

This experiment represents the first step a developer would take to adopting
Checked C into their project. The values converted into Ptr<τ> by the re-writer
need never be considered again during the rest of the conversion or by subsequent
software assurance / bug finding efforts.

6 Related Work

There has been substantial prior work that aims to address the vulnerability
presented by C’s lack of memory safety. A detailed discussion of how this work
compares to Checked C can be found in Elliott et al [11]. Here we discuss ap-
proaches for automating C safety, as that is most related to work on our rewriting
algorithm. We also discuss prior work generally on migratory typing, which aims
to support backward compatible migration of an untyped/less-typed program to
a statically typed one.

Security mitigations. The lack of memory safety in C and C++ has serious
practical consequences, especially for security, so there has been extensive re-
search toward addressing it automatically. One approach is to attempt to detect
memory corruption after it has happened or prevent an attacker from exploiting
a memory vulnerability. Approaches deployed in practice include stack canaries
[32], address space layout randomization (ASLR) [35], data-execution prevention
(DEP), and control-flow integrity (CFI) [1]. These defenses have led to an esca-
lating series of measures and counter-measures by attackers and defenders [33].
These approaches do not prevent data modification or data disclosure attacks,
and they can be defeated by determined attackers who use those attacks. By
contrast, enforcing memory safety avoids these issues.

Memory-safe C. Another important line of prior work aims to enforce memory
safety for C; here we focus on projects that aim to do so (mostly) automatically
in a way related to our rewriting algorithm. CCured [26] is a source-to-source
rewriter that transforms C programs to be safe automatically. CCured’s goal is
end-to-end soundness for the entire program. It uses a whole-program analysis
that divides pointers into fat pointers (which allow pointer arithmetic and unsafe
casts) and thin pointers (which do not). The use of fat pointers causes problems
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interoperating with existing libraries and systems, making the CCured approach
impractical when that is necessary. Other systems attempt to overcome the limi-
tations of fat pointers by storing the bounds information in a separate metadata
space [25, 24] or within unused bits in 64-bit pointers [19] (though this approach
is unsound [13]). These approaches can add substantial overhead; e.g., Soft-
bound’s overhead for spatial safety checking is 67%. Deputy [39] uses backward-
compatible pointer representations with types similar to those in Checked C.
It supports inference local to a function, but resorts to manual annotations at
function and module boundaries. None of these systems permit intermixing safe
and unsafe pointers within a module, as Checked C does, which means that
some code simply needs to be rewritten rather than included but clearly marked
within Unchecked blocks.

Migratory Typing. Checked C is closely related to work supporting migratory
typing [36] (aka gradual typing [31]). In that setting, portions of a program
written in a dynamically typed language can be annotated with static types.
For Checked C, legacy C plays the role of the dynamically typed language and
checked regions play the role of statically typed portions. In migratory typing,
one typically proves that a fully annotated program is statically type-safe. What
about mixed programs? They can be given a semantics that checks static types
at boundary crossings [21]. For example, calling a statically typed function from
dynamically typed code would induce a dynamic check that the passed-in ar-
gument has the specified type. When a function is passed as an argument, this
check must be deferred until the function is called. The delay prompted research
on proving blame: Even if a failure were to occur within static code, it could
be blamed on bogus values provided by dynamic code [37]. This semantics is,
however, slow [34], so many languages opt for what Greenman and Felleisen [14]
term the erasure semantics: No checks are added and no notion of blame is
proved, i.e., failures in statically typed code are not formally connected to errors
in dynamic code. Checked C also has erasure semantics, but Theorem 3 is able
to lay blame with the unchecked code.

Rust. Rust [20] is a programming language, like C, that supports zero-cost ab-
stractions, but like Checked C, aims to be safe. Rust programs may have des-
ignated unsafe blocks in which certain rules are relaxed, potentially allowing
run-time failures. As with Checked C, the question is how to reason about the
safety of a program that contains any amount of unsafe code. The RustBelt
project [17] proposes to use a semantic [23], rather than syntactic [38], account
of soundness, in which (1) types are given meaning according to what terms
inhabit them; (2) type rules are sound when interpreted semantically; and (3)
semantic well typing implies safe execution. With this approach, unsafe code can
be (manually) proved to inhabit the semantic interpretation of its type, in which
case its use by type-checked code will be safe.

We view our approach as complementary to that of RustBelt, perhaps con-
stituting the first step in mixed-language safety assurance. In particular, we
employ a simple, syntactic proof that checked code is safe and unchecked code
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can always be blamed for a failure—no proof about any particular unsafe code
is required. Stronger assurance that programs are safe despite using mixed code
could employ the (more involved and labor-intensive) RustBelt approach.

7 Conclusions and Future Work

This paper has presented CoreChkC, a core formalism for Checked C, an ex-
tension to C aiming to provide spatial safety. CoreChkCmodels Checked C’s
safe (checked) and unsafe (legacy) pointers; while these pointers can be inter-
mixed, use of legacy pointers is severely restricted in checked regions of code.
We prove that these restrictions are efficacious: checked code cannot be blamed
in the sense that any spatial safety violation must be directly or indirectly due
to an unsafe operation outside a checked region. Our formalization and proof are
mechanized in the Coq proof assistant. The freedom to intermix safe and legacy
pointers in Checked C programs affords flexibility when porting legacy code.
We show this is true for automated porting as well. A whole-program rewriting
algorithm we built is able to make more pointers safe than it would if pointer
types were all-or-nothing; we do this by taking advantage of Checked C’s allowed
casts and interface types.

As future work, we are interested in formalizing other aspects of Checked
C, notably its subsumption algorithm and support for flow-sensitive typing (to
handle pointer arithmetic), to prove that these aspects of the implementation are
correct. We are also interested in expanding support for the rewriting algorithm,
by using more advanced static analysis techniques to infer numeric bounds suit-
able for re-writing array types. Finally, we hope to automatically infer regions
of code that could be enclosed within checked regions.
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