
A Formal Model of Checked C

Abstract—In this work, we present a formal model of Checked
C, a dialect of C that aims to enforce spatial memory safety. Our
model pays particular attention to the semantics of dynamically
sized, potentially null-terminated arrays. We formalize this model
in Coq, and prove that any spatial memory safety errors can
be blamed on portions of the program labeled unchecked; this
is a Checked C feature that supports incremental porting and
backward compatibility. Our model develops an operational
semantics that uses fat pointers to guarantee spatial safety.
However, we formalize a compilation scheme that can yield
thin pointers, with bounds information managed using inserted
code. We show that the generated code faithfully simulates the
original. Finally, we build an executable version of our model in
PLT Redex, and use a custom random generator for well-typed
and almost-well-typed terms to find inconsistencies between our
model and the Clang Checked C implementation. We find this
a useful way to co-develop a language (Checked C is still in
development) and a core model of it.

I. INTRODUCTION

The C programming language remains extremely popular
despite the emergence of new, modern languages. Unfortu-
nately, C programs lack spatial memory safety, which has long
made them susceptible to a host of devastating vulnerabilities,
including buffer overflows and out-of-bounds reads/writes.
Despite their long history, buffer overflows and other spatial
safety violations are among the most prevalent and dangerous
vulnerabilities on the Internet today [25].

Several industrial and research efforts—including
CCured [18], Softbound [17], and ASAN [22]—have explored
means to compile C programs to automatically enforce spatial
safety. These approaches all impose performance overheads
that are deemed too high for use in deployment. Recently,
Microsoft introduced Checked C, an open-source extension
to C with new types and annotations whose use can ensure
a program’s spatial safety [4]. Importantly, Checked C
supports development that is incremental and compositional.
Code regions (e.g., functions or whole files) designated as
checked are sure to enforce spatial safety, a property which is
preserved via composition with other checked regions. But not
all regions must be checked: Checked C’s annotated checked
pointers are binary-compatible with legacy pointers, and may
coexist in the same code, which permits a deliberate (and
semi-automated) refactoring process. Parts of the FreeBSD
kernel have been successfully ported to Checked C [3], and
overall, performance overhead seems low enough for practical
deployment.

While Checked C promises to enforce spatial safety, we
might wonder whether its design and implementation deliver
on this promise, or even what “spatial safety” means when
a program contains both checked and unchecked code. In
prior work, Ruef et al. [21] developed a core formalization

of Checked C and with it proved that checked code cannot be
blamed: any spatial safety violation can only be attributed to
code that is not in a checked region. While their work is a
good start, it fails to model important aspects of Checked C’s
functionality, particularly those involving pointers to arrays. In
this paper, we cover this gap, making three main contributions.

Dynamically bounded and null-terminated arrays. Our
first contribution is a core formalism called CORECHKC,
which extends Ruef et al. [21] with several new features, most
notably dynamically bounded arrays (Section III). Dynami-
cally bounded arrays are those whose size is known only at
run time, as designated by in-scope variables using dependent
types. A pointer’s accessible memory is bounded both above
and below, to admit arbitrary pointer arithmetic.

We also model null-terminated arrays, whose upper bound
defines the array’s minimum length—additional space is avail-
able up to a null terminator. For example, the Checked C type
nt_array_ptr<char> p:count(n) says that p has length
at least n (excluding the null terminator), but further capacity
is present if p[n] is not null. Checked C (and CORECHKC)
supports flow-sensitive bounds widening: statements of the
form if (*p) s, where p’s type is nt_array_ptr<T> count

(0), typecheck statement s under the assumption that p has
type nt_array_ptr<T> count(1), i.e., one more than it
was, since the character at the current-known length is non-
null. Similarly, the call n = strlen(p) will widen p’s bounds
to n. Subtyping permits treating null-terminated arrays as
normal arrays of the same size (which does not include, and
thereby protects, the null terminator).

We prove, in Coq, a blame theorem for CORECHKC. As
far as we are aware, ours is the first formalized type system
and proof of soundness for pointers to null-terminated arrays
with expandable bounds.

Sound compilation of checked pointers. Our second con-
tribution is a formalization of bounds-check insertion for array
accesses (Section IV). Our operational semantics annotates
each pointer with metadata that describes its bounds, and the
assignment and dereference rules have premises to confirm the
access is in bounds. An obvious compilation scheme (taken
by Cyclone [7, 10], CCured [18], and earlier works) would
be to translate annotated pointers to multi-word objects: one
word for the pointer, and 1-2 words to describe its lower
and upper bounds. Inserted checks references these bounds.
While convenient, such “fat” pointers are expensive, and break
backward binary compatibility with legacy pointers. We for-
malize Checked C’s compilation approach, which uses a single
machine word for the pointer, and adds checks involving the
declared bounds (e.g., in a dependent type) or additional stack-
allocated ghost variables to accommodate bounds widening.



We show that the compiled program simulates the original
by mechanizing CORECHKC and the compilation judgment
in PLT Redex [6], and use its random testing feature to give
confidence that simulation holds.

As far as we are aware, ours is the first formalism to
cleanly separate bounds-checking compilation from the core
semantics; prior work merged the two, conflating meaning
with mechanism [2, 26]. In carrying out the formalization,
we discovered that our compilation approach is more expres-
sive than that proposed in the Checked C specification [23]
(Section IV-B); we doubt we would have discovered this had
we not separated it from the semantics.

Model-based randomized testing. Finally, our third con-
tribution is a strategy and implementation of model-based
randomized testing (Section V). To check the correctness of
our formal model, we compare the behavior between the
existing Clang Checked C implementation and our own model.
This is done by a conversion tool that converts expressions
from CORECHKC into actual Checked C code that can be
compiled by the Clang Checked C compiler. We build a
random generator of programs largely based on the typing
rules of CORECHKC and make sure that, both statically and
dynamically, CORECHKC and Clang Checked C are consistent
after conversion. This helped rapidly prototype the model and
uncovered several issues in the Checked C compiler.

We begin with a review of Checked C (Section II), present
our main contributions, and conclude with a discussion of
related and future work (Sections VI, VII).

II. CHECKED C OVERVIEW

This section describes Checked C, which extends C with
new pointer types and annotations that ensure spatial safety.
More details can be found in a prior overview [4] or the full
specification [23]. Checked C is implemented as a fork of
Clang/LLVM and is freely available.1

A. Checked Pointer Types

Checked C introduces three varieties of checked pointer:
• ptr<T> types a pointer that is either null or points to a

single object of type T .
• array_ptr<T> types a pointer that is either null or

points to an array of T objects. The array width is defined
by a bounds expression, discussed below.

• nt_array_ptr<T> is like array_ptr<T> except that
the bounds expression defines the minimum array width—
additional objects may be available past the upper bound,
up to a null terminator.

A bounds expression used with the latter two pointer types
has two forms:
• count(e) where e defines the array’s length. Thus,

if pointer p has bounds count(n) then the accessible
memory is in the range [p, p+n]. Bounds expression e
must be side-effect free and may only refer to variables
whose addresses are not taken, or adjacent struct fields.

1https://github.com/Microsoft/checkedc-clang

1 nt_array_ptr<const char>
2 parse_utf16_hex(nt_array_ptr<const char> s,
3 ptr<uint> result) {
4 int x1, x2, x3, x4;
5 if (s[0] != 0) { x1 = hex_char_to_int(s[0]);
6 if (s[1] != 0) { x2 = hex_char_to_int(s[1]);
7 if (s[2] != 0) { x3 = hex_char_to_int(s[2]);
8 if (s[3] != 0) { x4 = hex_char_to_int(s[3]);
9 if (x1 != -1 && x2 != -1 && x3 != -1 && x4 != -1){

10 *result = (uint)((x1<<12)|(x2<<8)|(x3<<4)|x4);
11 return s+4;
12 ...// several } braces
13 }
14 return 0;
15 }
16 void parse(nt_array_ptr<const char> s,
17 array_ptr<uint> p : count(n),
18 int n) {
19 array_ptr<uint> q : bounds(p,p+n) = p;
20 while (s && q < p+n) {
21 array_ptr<uint> r : count(1) =
22 dyn_bounds_cast<array_ptr<uint>>(q,count(1));
23 s = parse_utf16_hex(s,r);
24 q++;
25 }
26 }

Fig. 1: Parsing a string of UTF16 hex characters in Checked C

• byte_count(e) is like count, but expresses arith-
metic using bytes, no objects; i.e., count(e) used
for array_ptr<T> is equivalent to byte_count(e ×
sizeof(T ))

• bounds(el,eh) where el and eh are pointers that bound
the accessible region [el, eh) (the expressions are sim-
ilarly restricted). Bounds count(e) is shorthand for
bounds(p, p + e). This most general form of bounds
expression is useful for supporting pointer arithmetic.

The Checked C compiler will instrument loads and stores
of checked pointers to confirm the pointer is non-null, and
the access is within the specified bounds. For pointers p of
type nt_array_ptr<T>, such a check could spuriously fail
if the index is past p’s specified upper bound, but before the
null terminator. To address this problem, Checked C supports
bounds widening. If p has bounds expression bounds(el,eh)
a program may read from (but not write to) eh; when the

compiler notices that a non-null character is read at the upper
bound, it will extend that bound to eh + 1.

B. Example

Fig. 1 gives an example Checked C program.2 The function
parse_utf16_hex on lines 1-17 takes as its argument null-
terminated pointer s from which it attempts to read four
characters. These are interpreted as hex digits and converted
to an uint returned via parameter result. At the outset, s
has no specific bounds annotation, which we can interpret

as count(0); this means that s[0] may be read on line 5.

2Ported from the Parson JSON parser, https://github.com/kgabis/parson



The true branch of the conditional (which extends all the way
to the brace on line 15) is thus typechecked with s given a
widened bound of count(1). Likewise, the conditionals on
lines 6-8 each widen it one further; the widened pointer (s+4)
is returned on success.

The parse function on lines 18-26 repeatedly invokes
parse_utf16_hex with its parameter s, and fills out array
p whose declared length is the parameter n. Writes happens
via pointer q, which is updated using pointer arithmetic. We
specify its bounds as bounds(p,p+n) to support this: even
as q changes, its bounds variables p and n do not. Converting
from an array_ptr<uint> to a ptr<uint>, done for the call
on line 25, requires proving the array has size at least 1. This
is true because of the loop condition q < p+n, which is q’s
upper bound, but the compiler is not smart enough to figure
this out. To convince it, we can manually insert a bounds check
using dyn_bounds_cast.

While bounds checks are conceptually inserted on every
array load and store, many of these are eliminated by LLVM.
For example, all of the pointer accesses to s on lines 5-8 are
proved safe at compile-time, so no bounds checks are inserted
for them. Elliott et al. [4] reported average run-time overheads
of 8.6% on a pointer-intensive benchmark suite (49.3% in one
case); Duan et al. [3] measured no overhead at all on a port
of FreeBSD’s UDP and IP stacks to Checked C.

C. Other features

Checked C has other features not modeled in this paper.
Two in regular use are interop types, which ascribe checked
pointer types to unported legacy code, notably in libraries;
and generic types on both functions and structs, for type-
safe polymorphism. More details about these can be found in
the language specification.

D. Spatial Safety and Backward Compatibility

Checked C is backward compatible with legacy C in the
sense that all legacy code will typecheck and compile. How-
ever, only code that appears in checked regions, which we
call checked code, is spatially safe. Checked regions can be
designated at the level of files, functions, or individual code
blocks, the first with a #pragma and the latter two using
the checked keyword.3 Within checked regions, both legacy
pointers and certain unsafe idioms (e.g., variadic function
calls) are disallowed. The code in Fig. 1 satisfies these
conditions, and will typecheck in a checked region.

How should we think about code that contains both checked
and legacy components? Ruef et al. [21] proved, for a simple
formalization of Checked C, that checked code cannot be
blamed: Any spatial safety violation owes to the execution
of unchecked code. In this paper we extend that result to a
richer formalization of Checked C.

III. FORMALIZATION

This section describes our formal model of Checked C,
called CORECHKC, making precise its syntax, semantics, and

3You can also designate unchecked regions within checked ones.

Function names: f Variables: x Integers: n ::= Z
Mode: m ::= c | u
Bound: b ::= n | x + n

β ::= (b, b)

Word Type: τ ::= int | ptrm ω

Type Flag: κ ::= nt | ·
Type: ω ::= τ | [β τ ]κ

Expression: e ::= n :τ | x | malloc(ω) | let x = e in e

| (τ)e | 〈τ〉e | f(e) | strlen(x)

| e + e | *e | *e = e | unchecked e
| if (e) e else e

Fig. 2: CORECHKC Syntax

type system, and developing its metatheory, including type
soundness and the blame theorem.

A. Syntax

The syntax of CORECHKC is given by the expression-based
language presented in Fig. 2.

There are two notions of type in CORECHKC. Types τ
classify word-sized values including the integers and pointers,
while types ω classify multi-word values such as arrays, null-
terminated arrays, and single-word-size values. Pointer types
(ptrm ω) include a mode annotation (m) which is either
checked (c) or unchecked (u) and a type (ω) denoting the type
of value to which is pointed. Array types include both the type
of elements (τ ) and a bound (β) comprised of an upper and
lower bound on the size of the array ((bl, bh)). Bounds b are
limited to integer literals n and expressions x + n. Whether
an array pointer is null terminated or not is determined by
annotation κ, which is nt for null-terminated arrays, and ·
otherwise (we elide the · when writing the type). Here is the
corresponding Checked C syntax for these types:

array_ptr<τ> : count(n) ⇔ ptrc [(0, n) τ ]

nt_array_ptr<τ> : count(n) ⇔ ptrc [(0, n) τ ]nt

As a convention we write ptrc [b τ ] to mean ptrc [(0, b) τ ],
so the above examples could be rewritten ptrc [n τ ] and
ptrc [n τ ]nt, respectively.

CORECHKC expressions include literals (n : τ ), vari-
ables (x), memory allocation (malloc(ω)), let binding
(let x = e1 in e2), static and dynamic casts ((τ)e and 〈τ〉e,
resp.), function calls (f(e)), addition (e1 + e2), pointer deref-
erence and assignment (*e and *e1 = e2, resp.), unchecked
blocks (unchecked e), the strlen operation (strlen(x)),
and conditionals if (e) e1 else e2.

Integer literals n are annotated with a type τ which can be
either int, or ptrm ω in the case n is being used as a heap
address (this is useful for the semantics). The strlen expres-
sion operates on variables x rather than arbitrary expressions to
simplify managing bounds information in the type system; the
more general case can be encoded with a let. We use a less
verbose syntax for dynamic bounds casts; e.g., the following
dyn_bounds_cast<array_ptr<τ>>(e, count(n))



µ ::= n :τ | ⊥
e ::= . . . | ret(x, µ, e)
r ::= e | null | bounds
E ::= � | let x =E in e | f(E) | (τ)E | 〈τ〉E

| ret(x, n :τ , E) | E + e | n :τ + E | *E | *E = e

| *n :τ =E | unchecked E | if (E) e else e

E ::= E | n :τ, E | E, e

m = mode(E) e = E[e′] (ϕ,H , e′) −→ (ϕ′,H ′, e′′)
(ϕ,H , e) −→m (ϕ′,H ′, E[e′′])

Fig. 3: CORECHKC Semantic Defs; Successful Transition

becomes 〈ptrc [n τ ]nt〉e.
CORECHKC aims to be simple enough to work with, but

powerful enough to encode realistic Checked C idioms. For
example: mutable local variables can be encoded as immutable
locals that point to the heap (and likewise use of & can be
simulated with malloc); loops can be encoded as recursive
function calls; structs are not in Fig. 2 for space reasons, but
they are actually in our model, and developed in Appendix E.
C-style unions have no safe typing in Checked C, so we elide
them. By default, functions are assumed to be within checked
regions; placing the body in an unchecked expression relaxes
this, and within that, checked regions can be nested within via
function calls. Bounds are restricted slightly: rather than al-
lowing arbitrary subexpressions, bounds must be either integer
literals or variables plus an integer offset, which accounts for
most uses of bounds in Checked C programs. CORECHKC
bounds are defined as relative offsets, not absolute ones, as
in the second part of Fig. 1. We see no technical problem to
modeling absolute bounds, but it would be a pervasive change
so we have not done so.

B. Semantics

The operational semantics for CORECHKC is defined
as a small-step transition relation with the judgment
(ϕ,H , e) −→m (ϕ′,H ′, r). Here, ϕ is a stack mapping
from variables to values n : τ and H is a heap mapping
addresses (integer literals) to values n :τ ; for both we ensure
FV (τ) = ∅. The relation steps to a result r, which is either
an expression or a null or bounds failure, representing a
null-pointer dereference or out-of-bounds access, respectively.
Such failures are a good outcome; stuck states (non-value
expressions that cannot transition to a result r) characterize
undefined behavior. The mode m indicates whether the stepped
redex within e was in a checked (c) or unchecked (u) region.

The main rule for the semantics is given at the bottom of
Fig. 3. The rule takes an expression e, decomposes it into an
evaluation context E and a subexpression e′ (such that replac-
ing the hole � in E with e′ would yield e), and then evaluates
e′ according computation relation (ϕ,H , e′) −→ (ϕ,H , e′′),
discussed shortly. The computation relation can transition to
any r; the rule in the figure just considers r = e. For the cases
r = null and r = bounds, two other rules (not shown) will

cause the whole evaluation to terminate with r. The semantics
has a special case for a conditional if (e0) e1 else e2. If
e0 = *x, the conditional itself is considered as the redex with
special handling for bound widening. Otherwise, the standard
conditional behavior is used. The mode function determines
the mode of the evaluating e′ based on the context E: if the
� in E occurs in context unchecked E′, the mode is u,
otherwise, it is c. Evaluation contexts E define a standard left-
to-right evaluation order. (We explain the ret(x, µ, e) syntax
shortly.)

Fig. 4 shows selected cases of the computation relation. We
explain the rules in turn using the example of Fig. 5.

Pointer accesses. The rules for dereference and assignment
operations—S-DEF, S-DEFNULL, S-DEFNTARRAY, and S-
ASSIGNARR—illustrate how the semantics checks bounds.
Rule S-DEFNULL transitions attempted null-pointer derefer-
ences to null, whereas S-DEF dereferences a non-null (single)
pointer.

S-ASSIGNARR assigns to an array as long as 0 (the point
of dereference) is within bounds designated by the pointer’s
annotation and strictly less than the upper bound. Note for the
assignment rule, arrays are treated uniformly whether they are
null-terminated or not (κ can be · or nt)—the semantics does
not search past the current position for a null terminator, for
example. The program can widen the bounds as needed, if
they currently precede the null terminator: S-DEFNTARRAY,
which dereferences an NT array pointer, allows an upper
bound of 0, since the program may read, but not write, the
null terminator. A separate rule (not shown) handles normal
arrays.

Casts. Static casts of a literal n : τ ′ to a type τ are
handled by S-CAST. In a type-correct program, such casts
are confirmed safe by the type system. To evaluate a cast,
the rule updates the type annotation on n. Before doing so, it
must “evaluate” any variables that occur in τ according to their
bindings in ϕ. For example, if τ was ptrc [(0, x+ 3) int],
then ϕ(τ) would produce ptrc [(0, 5) int] if ϕ(x) = 2.

Dynamic casts are accounted for by S-DYNCAST and S-
DYNCASTBOUND. In a type-correct program, such casts are
assumed correct by the type system, and later confirmed by
the semantics. As such, a dynamic cast will cause a bounds

failure if the cast-to type is incompatible with the type of the
target pointer, as per the n′l > nl ∨ nh > n′h condition in S-
DYNCASTBOUND. An example use of dynamic casts is given
on line 7 in Fig. 5. The values of x and n might not be known
statically, so the type system cannot confirm that x ≤ n; the
dynamic cast assumes this inequality holds, but then checks it
at run-time.

Binding and Function Calls. The semantics handles vari-
able scopes using the special ret form. S-LET evaluates to a
configuration whose stack is ϕ extended with a binding for x,
and whose expression is ret(x, ϕ(x), e)) which remembers x
was previously bound to ϕ(x); if it had no previous binding,
ϕ(x) = ⊥. Evaluation proceeds on e until it becomes a literal
n : τ , in which case S-RET restores the saved binding (or ⊥)
in the new stack, and evaluates to n :τ .



S-CAST
(ϕ,H , (τ)n :τ ′) −→ (ϕ,H , n :ϕ(τ))

S-RET
(ϕ,H , ret(x, µ, n :τ)) −→ (ϕ[x 7→ µ],H , n :τ)

S-LET
(ϕ,H , let x =n :τ in e) −→ (ϕ[x 7→ n :τ ],H , ret(x, ϕ(x), e))

S-DEFNULL
(ϕ,H , *0:ptrc ω) −→ (ϕ,H , null)

S-DEFNTARRAY
H (n) = na :τa 0 ∈ [nl, nh]

(ϕ,H , *n :ptrc [(nl, nh) τ ]nt) −→ (ϕ,H , na :τ)

S-FUN
Ξ(f) = τ (x :τ) e

(ϕ,H , f(n :τa)) −→ (ϕ,H , let x = n : (τ [n/x]) in (τ [n/x])e)

S-DYNCAST
ϕ(ptrm [β τ ]κ) = ptr

m [(n′l, n
′
h) τb]κ n′l ≤ nl nh ≤ n′h

(ϕ,H , 〈ptrm [β τ ]κ〉n :ptrm [(nl, nh) τa]κ) −→ (ϕ′,H ′, n :ptrm [(n′l, n
′
h) τb]κ)

S-DYNCASTBOUND
ϕ(ptrc [β τ ]κ) = ptr

c [(n′l, n
′
h) τb]κ n′l > nl ∨ nh > n′h

(ϕ,H , 〈ptrc [β τ ]κ〉n :ptrc [(nl, nh) τa]κ) −→ (ϕ′,H ′, bounds)

S-STRWIDEN
ϕ(x) = n :ptrc [(nl, nh) τ ] 0 ∈ [nl, nh] na > nh H (n+ na) = 0

(∀i.n ≤ i < n+ na ⇒ (∃ni ti.H (n+ i) = ni :τi ∧ ni 6= 0))

(ϕ,H , strlen(x)) −→ (ϕ[x 7→ n :ptrc [(nl, na) τ ]],H , na :int)

S-IFNTT
ϕ(x) = n :ptrc [(nl, 0) τ ]nt H (n) 6= 0

(ϕ,H , if (∗x) e1 else e2) −→ (ϕ[x 7→ n :ptrc [(nl, 1) τ ]nt],H , e1)

S-ASSIGNARR
H (n) = na :τa 0 ∈ [nl, nh)

(ϕ,H , *n :ptrc [(nl, nh) τ ]κ =n1 :τ1) −→ (ϕ,H [n 7→ n1 :τ ], n1 :τ)

S-DEF
H (n) = na :τa

(ϕ,H , *n :ptrm τ) −→ (ϕ,H , na :τ)

Fig. 4: CORECHKC Computation Relation, Selected Rules

Function calls are handled by S-FUN. Recall that array
bounds in types may refer to in-scope variables; e.g., parameter
a’s bound count(n) refers to parameter n on lines 2-3 in
Fig. 5. A call to function f causes f ’s definition to be retrieved
from Ξ, which maps function names to forms τ (x :τ) e, where
τ is the return type, (x :τ) is the parameter list of variables and
their types, and e is the function body. The call is expanded
into a let which binds parameter variables x to the actual
arguments n, but annotated with the parameter types τ (this
will be safe for type-correct programs). The function body e is
wrapped in a static cast (τ [n/x]), which is the function’s return
type but with any parameter variables x appearing in that type
substituted with the call’s actual arguments n. To see why this
is needed, suppose that strncat in Fig. 5 is defined to return
a nt_array_ptr<int>:count(n) typed term, and assume
that we perform a strncat function call as x=strncat(a,

b,10). After the evaluation of strncat, the function returns
a value with type nt_array_ptr<int>:count(10) because
we substitute bound variable n in the defined return type with
10 from the function call’s argument list.

Bounds Widening. Bounds widening occurs when branch-
ing on a dereference of a NT array pointer, or when performing
strlen. The latter is most useful when assigned to a local
variable so that subsequent code can use the result, e.g., e
in let x = strlen(y) in e. Lines 4 and 5 in Fig. 5 are ex-

amples. The widened upper bound precipitated by strlen(y)
is extended beyond the lifetime of x, as long as y is live.
For example, x’s scope in line 4 is the whole function body in
strncat because the lifetime of the pointer y is in the function
body. This is different from the Checked C specification,
which only allows bound widening to happen within the scope
of x, and restoring old bound values once x dies. We allow
widening to persist outside the scope at run-time as long as
we are within the stack frame, and we show this does not
necessarily require the use of fat pointers in Sec. IV.

Rule S-STRWIDEN implements strlen widening. The
predicate ∀i.n ≤ i < n + na ⇒ (∃ni ti.H (n + i) = ni :
τi∧ni 6= 0)) aims to find a position n+na in the NT array that
stores a null character, where no character as indexes between
n and n+ na contains one. (This rule handles the case when
na > nh, the na ≤ nh case is handled by a normal strlen
rule; see Appx. 12.)

Rule S-IFNTT performs bounds widening on x when the
dereference *x is not at the null terminator, but the pointer’s
upper bound is 0 (i.e., it’s at the end of its known range). x’s
upper bound is incremented to 1, and this count persists as
long as x is live. For example, s’s increment (lines 5–8) is
live until the return of the function in Fig. 1; thus, line 11 is
valid because s’s upper bound is properly extended.



1 nt_array_ptr<int> strncat : count(0)
2 (nt_array_ptr<int> a : count(n),
3 nt_array_ptr<int> b : count(0), int n) {
4 int x = strlen(a);
5 int y = strlen(b);
6 if (x ≤ n)
7 nt_array_ptr<int> c : count(n) =
8 dynamic_bounds_cast
9 <nt_array_ptr<int>>(a,count(n));

10 else return null;
11

12 if (x+y ≤ n)
13 for (int i = 0; i < y; ++i)
14 * (c+x+i) = * (b+i);
15 else return null;
16 return a;
17 }
18

19 nt_array_ptr<int> strncat_c : count(0)
20 (nt_array_ptr<int> a : count(n),
21 nt_array_ptr<int> b : count(0), int n) {
22 int x = 0;
23 int y = strlen(b);
24 while (*x != ’/0’)
25 a++; x++;
26

27 for (int i = 0; i < y; ++i)
28 if (i + x < n)
29 * (a+i) = * (b+i);
30 else return null;
31 return a;
32 }

Fig. 5: Implementations for strncat

C. Typing

We now turn to the CORECHKC type system. The typing
judgment has the form Γ; Θ `m e : τ , which states that in
type environment Γ (mapping variables to their types) and
predicate environment Θ (mapping integer-typed variables to
Boolean predicates), expression e will have type τ if evaluated
in mode m. Key rules for this judgment are given in Fig. 6.
In the rules, m ≤ m′ uses the two-point lattice with u < c.
All remaining rules are given in Appx. A and D.

Pointer Access. Rules T-DEFARR and T-ASSIGNARR
typecheck array dereference and assignment operations resp.
returning the type of pointed-to objects; rules for pointers to
single objects are similar. The condition m ≤ m′ ensures
that checked pointers cannot be dereferenced in unchecked e
blocks; the type rule for unchecked e (not shown) sets m = u

when checking e. The rules do not attempt to reason whether
the access is in bounds; this check is deferred to the semantics.

Casting and Subtyping. Rule T-CAST rule forbids casting
to checked pointers when in checked regions (when m = c),
but τ is unrestricted when m = u. The T-CASTCHECKEDPTR
rule permits casting from an expression of type τ ′ to a checked
pointer when τ ′ v ptrc τ . This subtyping relation v is given
in Fig. 7; the many rules ensure the relation is transtive. Most
of the rules handle casting between array pointer types; the

second rule 0 ≤ bl ∧ bh ≤ 1 ⇒ ptrm τ v ptrm [(bl, bh) τ ]
permits treating a singleton pointer as an array pointer with
bh ≤ 1 and 0 ≤ bl.

Since bounds expressions may contain variables, determin-
ing assumptions like bl ≤ b′l requires reasoning about those
variables’ possible values. The type system uses Θ to make
such reasoning more precise.4 Θ is a map from variables x to
predicates P , which have the form P ::= > | ge 0. If Θ maps
x to >, that means that the variable can possibly be any value;
ge 0 means that x ≥ 0. We will see how Θ gets populated
and give a detailed example of subtyping below.5

Rule T-DYNCAST typechecks dynamic casting operations,
which apply to array pointer types only. The cast is accepted
by the type system, as its legality will be checked by the
semantics.

Bounds Widening. The bounds of NT array pointers may
be widened at conditionals, and due to calls to strlen. Rule
T-IF handles normal branching operations; rule T-IFNT is
specialized to the case of branching on *x when x is a NT
array pointer whose upper bound is 0. In this case, true-branch
e1 is checked with x’s type updated so that its upper bound is
incremented by 1; the else-branch e2 is typechecked under the
existing assumptions. For both rules, the resulting type is the
join of the types of the two branches (according to subtyping).
This is important for the situation when x itself is part of the
result, since x will have different types in the two branches.

Rule T-STR handles the case for when strlen(y) does
not appear in a let binding. Rule T-LETSTR handles the case
when it does, and performs bounds widening. The result of
the call is stored in variable x, and the type of y is updated
in Γ when checking the let-body e to indicate that x is y’s
upper bound. Notice that the lower bound bl is unaffected by
the call to strlen(y); this is sound because we know that
strlen will always return a result n such that n ≥ bh, the
current view of x’s upper bound. The type rule tracks strlen’s
widened bounds within the scope of x, while the bound-
widening effect in the semantics applies to the lifetime of y.
Our type preservation theorem in Sec. III-D shows that our
type system is a sound model of the CORECHKC semantics,
and we discuss how we guarantee that the behavior of our
compiler formalization and the semantics matches in Sec. IV.

This rule also extends Θ when checking e, adding a pred-
icate indicating that x ≥ 0. To see how this information is
used, consider this example. The return on line 16 of Fig. 5
has an implicit static cast from the returned expression to the
declared function type (see rule T-FUN, described below). In
type checking the strlen on line 4, we insert a predicate in
Θ showing n ≥ 0. The static cast on line 16 is valid according
ot the last line in Fig. 7:

ptr
c [(0, n) τ ]κ v ptr

c [(0, 0) τ ]κ

because 0 ≤ 0 and 0 ≤ n, where the latter holds since Θ
proves n ≥ 0. Without Θ, we would need a dynamic cast.

4So, technically, the subtyping relation v and the bounds ordering relation
≤ are parameterized by Θ; this fact is implicit to avoid clutter.

5As it turns out, the subtyping relation is also parameterized by ϕ, which
is needed when type checking intermediate results to prove type preservation;
source programs would always have ϕ = ∅. Details are in Appendix C.



T-CAST
m = c⇒ τ 6= ptr

c τ ′′ for any τ ′′

Γ; Θ `m e : τ ′

Γ; Θ `m (τ)e : τ

T-CASTCHECKEDPTR
Γ; Θ `m e : τ ′ τ ′ v ptr

c τ

Γ; Θ `m (ptrc τ)e : ptrc τ

T-DYNCAST
Γ; Θ `m e : ptrm [β′ τ ]κ

Γ; Θ `m 〈ptrm [β τ ]κ〉e : ptrm [β τ ]κ

T-STR
Γ; Θ `m e : ptrm [β τa]nt

Γ; Θ `m strlen(e) : int

T-LETSTR
Γ(y) = ptr

c [(bl, bh) τa]nt x 6∈ FV (τ)
Γ[x 7→ int, y 7→ [ptrc [(bl, x) τa]nt]; Θ[x 7→ ge 0] `m e : τ

Γ; Θ `m let x = strlen(y) in e : τ

T-RET
Γ(x) 6= ⊥ Γ; Θ `m e : τ

Γ; Θ `m ret(x, µ, e) : τ

T-IF
Γ; Θ `m e : τ

Γ; Θ `m e1 : τ1
Γ; Θ `m e2 : τ2

Γ; Θ `m if (e) e1 else e2 : τ1 t τ2

T-IFNT
Γ; Θ `m x : ptrc [(bl, 0) τ ]nt

Γ[x 7→ ptr
c [(bl, 1) τ ]nt]; Θ `m e1 : τ1
Γ; Θ `m e2 : τ2

Γ; Θ `m if (*x) e1 else e2 : τ1 t τ2

T-LET
x ∈ FV (τ ′)⇒ e1 ∈ Bound

Γ; Θ `m e1 : τ
Γ[x 7→ τ ]; Θ `m e2 : τ ′

Γ; Θ `m let x = e1 in e2 : τ ′[e1/x]

T-DEFARR
m ≤ m′

Γ; Θ `m e : ptrm
′

[β τ ]κ

Γ; Θ `m *e : τ

T-ASSIGNARR

Γ; Θ `m e1 : ptrm
′

[β τ ]κ
Γ; Θ `m e2 : τ ′ τ ′ v τ m ≤ m′

Γ; Θ `m *e1 = e2 : τ

T-FUN
Ξ(f) = τ (x : τ) e

Γ; Θ `m e : τ ′ τ ′ v τ [e/x]

Γ; Θ `m f(e) : τ [e/x]

Fig. 6: Selected Type Rules

τ v τ

0 ≤ bl ∧ bh ≤ 1 ⇒ ptrm τ v ptrm [(bl, bh) τ ]

bl ≤ 0 ∧ 1 ≤ bh ⇒ ptrm [(bl, bh) τ ] v ptrm τ

bl ≤ 0 ∧ 1 ≤ bh ⇒ ptrm [(bl, bh) τ ]nt v ptrm τ

bl ≤ b′l ∧ b′h ≤ bh ⇒ ptrm [(bl, bh) τ ]nt v ptrm [(b′l, b
′
h) τ ]

bl ≤ b′l ∧ b′h ≤ bh ⇒ ptrm [(bl, bh) τ ]κ v ptrm [(b′l, b
′
h) τ ]κ

Fig. 7: Subtyping Relation

In our formal presentation, Θ is quite simple and is just
meant to illustrate how static information can be used to avoid
dynamic checks; it is easy to imagine richer environments of
facts that can be leveraged by, say, an SMT solver as part of
the subtyping check [20, 24]

Dependent Functions and Let Bindings. Rule T-FUN
is the standard dependent function call rule. It looks up
the definition of the function in the function environment
Ξ, typechecks the actual arguments e which have types τ ′,
and then confirms that each of these types is a subtype of
the declared type of f ’s corresponding parameter. Because
functions have dependent types, we substitute each parameter
ei for its corresponding parameter xi in both the parameter
types and the return type. Consider the strncat function in
Fig. 5; its parameter type for a depends on n. The T-FUN rule
will substitute n with the argument at a call-site.

Rule T-LET types a let expression, which also admits type
dependency. In particular, the result of evaluating a let may
have a type that refers to one of its bound variables (e.g., if
the result is a checked pointer with a variable-defined bound);
if so, we must substitute away this variable once it goes out of
scope. Note that we restrict the expression e1 to syntactically

match the structure of a Bounds expression b (see Fig. 2).
Rule T-RET types a ret expression, which does not appear

in source programs but is introduced by the semantics when
evaluating a let binding (rule S-LET in Fig. 4); this rule is
needed for the preservation proof. After the evaluation of a let
binding a variable x concludes, we need to restore any prior
binding of x, which is either ⊥ (meaning that there is no x
originally) or some value n :τ .

D. Type Soundness and Blame

In this subsection, we focus on our main metatheoretic
results about CORECHKC: type soundness (progress and
preservation) and blame. The type soundness theorems rely
on a notion of heap and stack well-formedness:

Definition 1 (Heap Well-formedness): A heap H is well-
formed, iff (i) the null position (0) is not defined in H , and
(ii) every type annotation in it contains no free variables.

Definition 2 (Stack Well-formedness): A stack snapshot ϕ
is well-formed, iff every type annotation in it contains no free
variables.

Moreover, as a program evaluates its expression may contain
literals n : τ where τ is a pointer type, i.e., n is an index in
H (perhaps because n was chosen by malloc). The normal
typechecking judgment for e is implicitly parameterized by H ,
and the rules for typechecking literals confirm that pointed-to
heap cells are compatible with (subtypes of) the pointer’s type
annotation; in turn this check may precipitate checking the
type consistency of the heap itself. We follow the same ap-
proach as Ruef et al. [21], and show the rules in Appendix A.

Progress now states that terms that don’t reduce are either
values or their mode is unchecked:

Theorem 1 (Type Progress Theorem): For any Checked C
program e and heap H , if e and H are well-formed, and



∅; ∅ `m e : τ , then e is either a value (n : τ ), unchecked
(m = u), or there exists ϕ′ H ′ e′, such that (∅,H , e) −→m

(ϕ′,H ′, e′).
Proof: By induction on the typing derivation.

For preservation, we also need to introduce a notion of
consistency, relating heap environments before and after a
reduction step, and type environments, predicate sets, and
stack snapshots together.

Definition 3 (Type-Stack Consistency): A type environment
Γ, variable predicate set Θ, and stack snapshot ϕ are consis-
tent, iff every variable defined in Θ is defined in Γ, and for
every variable x, Γ(x) = τ implies that ϕ(x) is defined and
there exists n and τ ′, such that ϕ(x) = n :τ ′ and τ ′ v τ .

Definition 4 (Heap Consistency): A heap H ′ is consistent
with H iff every address defined in H is defined in H ′.

Armed with the definitions of consistency, we can now prove
preservation, which states that a reduction step preserves both
the type of the expression being reduced, as well as well-
formedness and consistency of environments:

Theorem 2 (Type Preservation Theorem): For any
Checked C program e, heap H , stack ϕ, type environment
Γ, variable predicate set Θ, and a type τ , that are all are
well-formed, if Γ,Θ, and ϕ are consistent, e is well typed
Γ; Θ `c e : τ , and if there exists ϕ′, H ′ and e′, such that
(ϕ,H , e) −→c (ϕ′,H ′, e′), then there exists Γ′, Θ′ and τ ′,
such that Γ′, Θ′, ϕ′, H ′ and e′ are well-formed, Γ′, Θ′ and ϕ′

are consistent, H ′ is consistent with H , Γ′; Θ′ `c e : τ ′, and
τ ′ v τ .
Proof: By induction on the typing derivation.

Using type soundness we can prove our main result, blame,
which states that if there is any spatial memory safety violation
is triggered, it must necessarily come from the unchecked
region.

Theorem 3: [The Blame Theorem] For any Checked C
program e, heap H , type τ , if H and e are well-formed,
∅; ∅ `c e : τ , and if there exists ϕ′, H ′, a failure result r,
and m, such that (ϕ,H , e) −→∗m (ϕ′,H ′, r), then there exist
E and ea, such that e′ = E[ea], and mode(E) = u.
Proof: By induction on the number of steps of the Checked C
evaluation (−→∗m), using progress and preservation to main-
tain the invariance of the assumptions.

These proofs have been carried out in a Coq development.

IV. COMPILATION

The semantics of CORECHKC uses annotations on pointer
literals in order to keep track of array bounds information,
which is checked at dereferences and changed during widen-
ing. However, in the real implementation of Checked C, these
annotations are not present—pointers are represented as a
single machine word with no extra metadata. We show how
the annotations can be safely erased: using static information
a compiler can insert code to manage and check bounds
metadata without loss of expressiveness.

This section sketches our compilation algorithm that con-
verts from CORECHKC to COREC, an untyped language with-
out metadata annotations. Compilation is defined by extending
CORECHKC’s typing judgment thusly:

Γ; Θ; ρ `m e� ė : τ

There is now a COREC output ė and an input ρ, which maps
each nt_array_ptr variable p to a pair of ghost variables
that keep p’s up-to-date upper and lower bounds; these may
differ from the bounds in p’s type due to bounds widening.6

When Γ,Θ and ρ are all empty, we write e� ė rather than the
complete judgment, implicitly assuming that e is a well-typed
and closed term.

We formalize rules for this judgment in PLT Redex [6], fol-
lowing and extending our Coq development for CORECHKC.
To give confidence that compilation is correct, we use Redex’s
property-based random testing support to show that compiled-
to ė simulates e, for all e.

A. Approach

Due to space constraints, we explain the rules for compila-
tion by example; the complete rules are given in Appendix F.
Each rule performs up to three tasks: (a) conversion of e to A-
normal form; (b) insertion of dynamic checks; and (c) insertion
of bounds widening expressions. A-normal form conversion is
straightforward: compound expressions are handled by storing
results of subexpressions into temporary variables, as in the
following example.

y=(x+1)+(6+1);
a=x+1;
b=6+1;
y=a+b;

This simplifies the management of effects from subexpres-
sions. The next two steps of compilation are more interesting.

During compilation, Γ tracks the lower and upper bound
associated with every pointer variable according to its type.
At each declaration of a nt_array_ptr variable p, the com-
piler allocates two ghost variables, stored in ρ(p); these are
initialized to p’s declared bounds and will be updated during
bounds widening.7 Fig. 8 shows how an invocation of strlen
on a null-terminated string is compiled into C code. Each

dereference of a checked pointer requires a null check (See
S-DEFNULL in Fig. 4), which the compiler makes explicit:
Line 3 of the generated code has the null check on pointer p,
and similar checks happen at line 8 and line 11. Dereferences
also require bounds checks: line 2 checks p is in bounds before
computing strlen(p), while line 10 does likewise before
computing *(p+1).

For strlen(p) and conditionals if(*p), the CORECHKC
semantics allows the upper bound of p to be extended. The
compiler explicitly inserts statements to do so on p’s ghost
bound variables. For example, Fig. 8 line 6 widens p’s upper
bound if strlen’s result is larger than the existing bound.

6Since lower bounds are never widened, the lower-bound ghost variable is
unnecessary; we include it for uniformity.

7Ghost variables are not used for array_ptr types (the bounds expressions
are) since they are not subject to bounds widening.



1 /* nt_array_ptr<int> p : count(p,p) */
2 /* ρ(p) = p_lo,p_hi */
3 {
4 int x = strlen(p);
5 if (x > 1) putchar(*(p+1));
6 }

1 {
2 assert(p_lo ≤ p && p ≤ p_hi); //bound check
3 assert(p != NULL); //null check
4 int x = strlen(p);
5 int *p_hi_new = p + x;
6 p_hi = max(p_hi, p_hi_new);
7 if (x > 1) {
8 assert(p != NULL); //null check p
9 int *p_1 = p + 1;

10 assert(p_lo ≤ p_1 && p_1 ≤ p_hi); // p+1
11 assert(p_1 != NULL); //null check p+1
12 putchar(*p_1);
13 }
14 }

Fig. 8: Compilation Example for Check Insertions

1 int deref_array (int n,
2 nt_array_ptr<int> p : bounds(p, p+n)) {
3 /* ρ(p) = p_lo,p_hi */
4 if (*p) return *(p+1);
5 return 0;
6 }
7 ...
8 // nt_array_ptr<int> p0 : bounds(p0, p0+5)
9 deref_array(5, p0);

1 int deref_array(int n, int *p) {
2 int *p_lo = p;
3 int *p_hi = p + n;
4 /* runtime checks */
5 assert(p_lo ≤ p && p ≤ p_hi);
6 assert(p != NULL);
7 int p_derefed = *p;
8 if (p_derefed != ’\0’) {
9 /* widening */

10 if (p_hi == p) {
11 ++p_hi;
12 }
13 int *p0 = p + 1;
14 assert(p_lo ≤ p0 && p0 ≤ p_hi);
15 assert(p0 != NULL);
16 return *p0;
17 }
18 return 0;
19 ...
20 //int *p0, set_bounds(p0) = p_lo, p_hi
21 deref_array(5, p0);

Fig. 9: Compilation Example for Dependent Functions

Lines 7–12 of the generated code in Fig. 9 show how bounds
are widened when compiling expression if(*p). If we find

that the current p address is equal to the upper bound (line 10),
and p’s content is not null (line 8), we then increase the upper
bound by 1 (line 11). Fig. 9 also shows a dependent function
call. Notice that the bounds for the array pointer p are not
passed as arguments. Instead, they are initialized according to
p’s type—see line 3 of the original CORECHKC program at
the top of the figure. Line 2 of the generated code sets the
lower bound to p and line 3 sets the upper bound to p+n.

B. Comparison with Checked C Specification

The use of ghost variables for bounds widening is a key
novelty of our compilation approach, and adds more preci-
sion to bounds checking at runtime compared to the official
specification and current implementation of Checked C [23,
5.1.2, pg 85]. For example, the strncat example of Fig. 5
compiles with the current Clang Checked C compiler but will
fail with a runtime error. The statement int x = strlen(

a) at line 4 changes the upper bound of a to x, which can
be smaller than n, the capacity of the array pointer a. The
assignment at line 14 will always fail if the index x + i is
checked against the statically determined upper bound x. This
forces us to inline the definition of strlen as in strncat_c

to avoid runtime errors when running code compiled with
the Clang Checked C compiler. Likewise, if we were to add
another dereference to p after line 6 in the original code at
the top of Fig. 8, the Clang Checked C compiler would check
p against its original bounds (p,p) since the updated upper
bound p+x cannot be retained with x out of the scope. In the
presence of ghost variables, these bounds have been widened
by the assignment in line 5 (assuming the null-terminator was
not the first element of the string) and remain available in the
entire stack frame, and therefore the check will succeed. In
contrast, in the actual implementation of Checked C, the scope
of the widening is limited to the scope of the conditional at
both runtime and compile time, which means that the inserted
dynamic check would fail. To make it match the specification,
our compilation definition could rely only on the type-based
bounds expressions available in Γ for checking, and eschew
ghost variables. However, doing so would force us to weaken
the simulation theorem, reduce expressiveness, and/or force
the semantics to be more awkward. We plan to work with
the Checked C team to implement our approach in a future
revision.

C. Metatheory

While designing our Coq model of CORECHKC, we also
designed a model in PLT Redex.8 Redex [6] is a semantic en-
gineering framework implemented in Racket, which allows for
concisely specifying semantics and typing rules. We formalize
the simulation theorem in this model, and then attempt to
falsify it via Redex’s support for random testing. We ultimately
plan to prove simulation in the Coq model.

8The two models, in Redex and Coq, are equivalent, with the only difference
being in the representation of stacks: as we saw, the Coq model uses an explicit
map for representing stacks to ease the effort of theorem proving; on the other
hand, the Redex model uses let bindings to simulate a stack, which removes
the need to account for the stack during random generation of terms.



Turning to the simulation theorem: We first introduce no-
tation used to specify the theorem. We use the notation � to
indicate the erasure of stack and heap—the rhs is the same as
the lhs but with type annotations removed:

H �Ḣ
ϕ�ϕ̇

In addition, we write (ϕ,H , e)� (ϕ̇, Ḣ , ė) to denote ϕ� ϕ̇,
H � Ḣ and e� ė respectively.

We use ·−→
∗

to denote the transitive closure of the reduction
relation of COREC. Unlike the CORECHKC, the semantics of
COREC does not distinguish checked and unchecked reginos.

Fig. 10 gives an overview of the simulation theorem.9 The
simulation theorem is specified in a way that is similar to the
one by Merigoux et al. [16]. An ordinary simulation property
would replace the middle and bottom parts of the figure with
the following:

(ϕ̇0, Ḣ0, ė0)
·−→
∗

(ϕ̇1, Ḣ1, ė1)

Instead, we relate two erased configurations using the re-
lation ∼, which only requires that the two configurations
will eventually reduce to the same state. We formulate our
simulation theorem differently because the standard simulation
theorem imposes a very strong syntactic restriction to the
compilation strategy. Very often, (ϕ̇0, Ḣ0, ė0) reduces to a
term that is semantically equivalent to (ϕ̇1, Ḣ1, ė1), but we
are unable to syntactically equate the two configurations due
to the extra binders generated for dynamic checks and ANF
transformation. In earlier versions of the Redex model, we
attempted to change the compilation rules so the configura-
tions could match syntactically. However, the approach scaled
poorly as we added additional rules. This slight relaxation on
the equivalence relation between target configurations allows
us to specify compilation more naturally without having to
worry about syntactic constraints.

Theorem 4 (Simulation (∼)): For CORECHKC expressions
e0, stacks ϕ0, ϕ1, and heap snapshots H0, H1, if ∅; ∅; ∅ `c
e0 � ė0 : τ0, and if there exists some r1 such that
(ϕ0,H0, e0) →c (ϕ1,H1, r1), when r1 = e1 for some e1
and ∅; ∅; ∅ `c e1 � ė1 : τ1 where τ1 v τ0 , then there
exists some ϕ̇,Ḣ , ė, such that (ϕ̇0, Ḣ0, ė0)

·−→
∗

(ϕ̇, Ḣ , ė) and
(ϕ̇1, Ḣ1, ė1)

·−→
∗

(ϕ̇, Ḣ , ė). When r1 = bounds or null, we
have (ϕ̇0, Ḣ0, ė0)

·−→
∗

(̇̇ϕ1, Ḣ1, r1) where ϕ1 � ϕ̇1, H1 � Ḣ1.
Our random generator (discussed in the next section) never

produces unchecked expressions (whose behavior could be
undefined), so we can only test a the simulation theorem as it
applies to checked code. This limitation makes it unnecessary
to state the other direction of the simulation theorem where
e0 is stuck, because Theorem 1 guarantees that e0 will never
enter a stuck state if it is well-typed in checked mode.

The current version of the Redex model has been tested
against 20000 expressions with depth less than or equal to

9We ellide the possibility of ė1 evaluating to bounds or null in the
diagram for readability.

ϕ0,H0, e0 ϕ1,H1, e1

ϕ̇0, Ḣ0, ė0 ϕ̇1, Ḣ1, ė1

ϕ̇, Ḣ , ė

−→c

� �

∼

·−→
∗ ·−→

∗

Fig. 10: Simulation between CORECHKC and COREC

9. Each expression can reduce multiple steps, and we test
simulation between every two adjacent steps to cover a wider
range of programs, particularly the ones that have a non-empty
heap.

V. RANDOM TESTING VIA THE IMPLEMENTATION

In addition to using the CORECHKC Redex model to
establish simulation of compilation (Section IV-C), we also
used it to gain confidence that our model matches the Clang
Checked C implementation; disagreement on outcomes signals
a bug in either the model or the compiler itself. Doing so
allowed us to quickly iterate on the design of the model while
adding new features, and revealed several bugs in the Clang
Checked C implementation.

Generating Well Typed Terms. For this random genera-
tion, we follow the approach of Pałka et al. [19] to generate
well-typed Checked C terms by viewing the typing rules as
generation rules. Suppose we have a context Γ, a mode m and
a type τ , and we are trying to generate a well-typed expression.
We can do that by reversing the process of type checking,
selecting a typing rule and building up an expression in a way
that satisfies the rule’s premises.

Recall the typing rule for dereferencing an array pointer,
which we depict below as G-DEFARR10, color-coded to rep-
resent inputs and outputs of the generation process:11

G-DEFARR
Γ; Θ `m e : ptrma [β τ ]κ m ≤ ma

Γ; Θ `m *e : τ

If we selected G-DEFARR for generating an expression, the
generated expression has to have the form ∗e, for some e,
to be generated according to the rule’s premises. To satisfy
the premise Γ; Θ `m e : ptrma [β τ ]κ, we essentially need
to make a recursive call to the generator, with appropriately
adjusted inputs. However, the type in this judgment is not fixed
yet—it contains three unknown variables: ma, β, and κ—that
need to be generated before making the call. Looking at the
second premise informs that generation: if the input mode m is
u, then ma needs to be u as well; if not, it is unconstrained, just

10Generator rules G-* correspond one to one with the type rules T-* in
Sec. III-C.

11This input-output marking is commonly called a mode in the literature,
but we eschew this term to avoid confusion with our pointer mode annotation.



like β and κ, and therefore all three are free to be generated
at random. Thus, the recursive call to generate e can now be
made, and the G-DEFARR rule returns ∗e as its output.

Using such generator rules, we can create a generator for
random well-typed terms of a given type in a straightforward
manner: find all rules whose conclusion matches the given
type and then randomly choose a candidate rule to perform the
generation. To ensure that this process terminates, we follow
the standard practice of using “fuel” to bound the depth of the
generated terms; once the fuel is exhausted, only rules without
recursive premises are selected [12]. Similar methods were
used for generating top level functions and struct definitions.

While using just the typing-turned-generation rules is in
theory enough to generate all well-typed terms, it’s more
effective in practice to try and exercise interesting patterns.
As in Pałka et al. [19] this can be viewed as a way of adding
admissible but redundant typing rules, with the sole purpose
of using them for generation. For example, below is one such
rule, G-ASTR, which creates an initialized null-terminated
string that is statically cast into an array with bounds (0, 0).

G-ASTR
i ∈ N∗ n0, . . . , ni−1 ∈ Z fresh(x)

Γ `m e′ : ptrc [(0, i) int]nt
e = let x = e′ in (init x with n0, . . . ni−1);x

Γ `m (ptrc [(0, 0) int]nt)e : ptrc [(0, 0) int]nt

Given some positive number i, numbers n0, . . . , ni−1, and
a fresh variable x (which are arbitrarily generated), we can
recursively generate a pointer e′ with bounds (0, i), and
initialize it with the generated nj using x to temporarily store
the pointer.

This rule is particularly useful when combined with G-
IFNT since there is a much higher chance of obtaining a non-
zero value when evaluating *p in the guard of if, skewing
the distribution towards programs that enter the then branch.
Relying solely on the type-based rules, entering the then

branch requires G-ASSIGNARR was chosen before G-IFNT,
and that assignment would have to appear before if, which
means additional G-LET rules would need to be chosen:
this combination would therefore be essentially impossible to
generate in isolation.

Generating Ill-typed Terms. We can use generated well-
typed terms to test our simulation theorem (Section IV) and
test that CORECHKC and Checked C Clang agree on what is
type-correct. But it is also useful to generate ill-typed terms to
test that CORECHKC and Checked C Clang agree on those.
However, while it is easy to generate arbitrary ill-typed terms,
they would be very unlikely to trigger any inconsistencies;
those are far more likely to exist on the boundary between
well- and ill-typedness. Therefore, we also include generation
rules modified to be slightly more permissive, which results
in sometimes generating terms that are “a little” ill-typed.

Random Testing for Language Design. We used our
Redex model and random generator to successfully guide the
design of our formal model, and indeed the Clang Checked
C implementation itself, which is being actively developed.

To that end, we implemented a conversion tool that converts
CORECHKC into a subset of the Checked C language and
ensured that model and implementation exhibit the same
behavior (accept and reject the same programs and yield the
same return value).

This approach constitutes an interesting twist to traditional
model-based checking approaches. Usually, one checks that
the implementation and model agree on all inputs of the
implementation, with the goal of covering as many behaviors
as possible. This is the case, for example, in Guha et al. [8],
where they use real test suites to demonstrate the faithfullness
of their core calculus to Javascript. Our approach and goal in
this work is essentially the opposite: as the Clang Checked C
implementation does not fully implement the Checked C spec,
there is little hope of covering all terms that are generated by
Clang Checked C. Instead, we’re looking for inconsistencies,
which could be caused by bugs either in the Clang Checked
C compiler or our own model.

One inconsistency we found comes from the following:

1 array_ptr<char> fun(void) : count(3) {
2 array_ptr<char> x : count(3);
3 x = calloc(3, sizeof(char));
4 return x+3;
5 }
6 int main(void) {
7 *(fun()) = 0;
8 return 0;
9 }

In this code, the function fun is supposed to return a checked
array pointer of size 3. Internally, it allocates such an array, but
instead of returning the pointer x to that array, it increments
that pointer by 3. Then, the main function just calls fun,
and tries to assign 0 to its result. Our model correctly rules
out this program, while the Clang Checked C implementation
happily accepted this out-of-bounds assignment. Interestingly,
it correctly rejected programs where the array had size 1 or 2.
This inconsistency has been fixed in the latest version of the
compiler.

We also found the opposite kind of inconsistency—
programs that the Clang Checked C implementation rejects
contrary to the spec. For instance:12

1 array_ptr<int> f(void) : count(5) {
2 array_ptr<int> x : count(5) =
3 calloc<int>(5, sizeof(int));
4 return x;
5 }
6 array_ptr<int> g(void ) : count(5) {
7 array_ptr<int> x : count(5) =
8 calloc<int>(5, sizeof(int));
9 return x+3;

10 }
11 int main(void) {
12 return *(0 ? g() : f() + 3);
13 }

12After minimization, this turned out to be a known issue: https://github.
com/microsoft/checkedc-clang/issues/1008



In this piece of code both f and g functions compute a pointer
to the same index in an array of size 5 (as f calls g). The main
function then creates a ternary expression whose branches call
f and g, but the Clang Checked C implementation rejects this
program, as its static analysis is not sophisticated enough to
detect that both branches have the same type.

VI. RELATED WORK

Our work is most closely related to prior formalizations of
C(-like) languages that aim to enforce memory safety, but it
also touches on C-language formalization in general.

Formalizing C and Low-level code. A number of prior
works have looked at formalizing the semantics of C, including
CompCert [1, 13], Ellison and Rosu [5], Kang et al. [11], and
Memarian et al. [14, 15]. These works also model pointers
as logically coupled with either the bounds of the blocks
they point to, or provenance information from which bounds
can be derived. None of these is directly concerned with
enforcing spatial safety, and that is reflected in the design.
For example, memory itself is not be represented as a flat
address space, as in our model or real machines, so memory
corruption due to spatial safety violations, which Checked C’s
type system aims to prevent, may not be expressible. That said,
these formalizations consider much more of the C language
than does CORECHKC, since they are interested in the entire
language’s behavior.

Spatially Safe C Formalizations. Several prior works
formalize C-language transformations or C-language dialects
aiming to ensure spatial safety. Hathhorn et al. [9] extends the
formalization of Ellison and Rosu [5] to produce a semantics
that detects violations of spatial safety (and other forms of
undefinedness). It uses a CompCert-style memory model, but
“fattens” logical pointer representations to facilitate adding
side conditions similar to CORECHKC’s. Its concern is bug
finding, not compiling programs to use this semantics.

CCured [18] and Softbound [17] implement spatially safe
semantics for normal C via program transformation. Like
CORECHKC, both systems’ operational semantics annotate
pointers with their bounds. CCured’s equivalent of array
pointers are compiled to be “fat,” while SoftBound compiles
bounds metadata to a separate hashtable, thus retaining binary
compatibility at higher checking cost. Checked C uses static
type information to enable bounds checks without need of
pointer-attached metadata, as we show in Section IV. Neither
CCured nor Softbound models null-terminated array pointers,
whereas our semantics ensures that such pointers respect
the zero-termination invariant, leveraging bounds widening to
enhance expressiveness.

Cyclone [7, 10] is a C dialect that aims to ensure memory
safety; its pointer types are similar to CCured. Cyclone’s for-
malization [7] focuses on the use of regions to ensure temporal
safety; it does not formalize arrays or threats to spatial safety.
Deputy [2, 26] is another safe-C dialect that aims to avoid
fat pointers; it was an initial inspiration for Checked C’s
design [4], though it provides no specific modeling for null-
terminated array pointers. Deputy’s formalization [2] defines

its semantics directly in terms of compilation, similar in style
to what we present in Section IV. Doing so tightly couples
typing, compilation, and semantics, which are treated indepen-
dently in CORECHKC. Separating semantics from compilation
isolates meaning from mechanism, easing understandability.
Indeed, it was this separation that led us to notice the limitation
with Checked C’s handling of bounds widening.

The most closely related work is the formalization of
Checked C done by Ruef et al. [21]. They were the first to
formalize and prove blame for a core model of Checked C,
which shows that any spatial safety violation owes to invari-
ants violated by unchecked code. Our Coq-based develop-
ment (Section III) substantially extends theirs,13 re-proving
the blame theorem after adding dynamically bounded array
pointers with dependent types, null-terminated pointers, and
dependently typed functions. They postulate that pointer meta-
data can be erased, but do not show it; indeed, we found it
nontrivial once null-terminated pointers were considered.

VII. CONCLUSION AND FUTURE WORK

This paper presented CORECHKC, a formalization of an
extended core of the Checked C language which aims to
provide spatial memory safety. Our formalization modeled
dynamically sized and null-terminated arrays with dependently
typed bounds that can additionally be widened at runtime.
We prove, in Coq, the key safety property of Checked C for
our formalization, blame: if a mix of checked and unchecked
code gives rise to a spatial memory safety violation, then this
violation originated in an unchecked part of the code. We also
demonstrated how programs written in CORECHKC (whose
semantics leverage fat pointers) can be compiled to COREC
(which does not) while preserving their behavior. Finally, we
developed a random testing framework to guide the design
of our formal model by comparing it against the Checked C
compiler, finding multiple inconsistencies in the process.

As future work, we are interested in designing an a way
to automatically port legacy C code to Checked C. We also
want to further extend our CORECHKC model to include
more C behaviors, such as function pointers, with our testing
framework guiding the design process.
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APPENDIX

A. Typing Rules for Literal Pointers

One thing we elided from the main presentation is the typing
of integer literals (which can also be pointers to the heap).
These rules are shown in Fig. 11. The variable type rule
(T-VAR) simply checks if a given variable has the defined type
in Γ; the constant rule (T-CONST) is slightly more involved.
First, it ensures that the type annotation τ does not contain any
free variables. More importantly, it ensures that the literal itself
is well typed using an auxilliary typing relation σ ` n : τ ,
which is implicitly indexed by a given heap H .

If the literal’s type is an integer, an unchecked pointer, or a
null pointer, it is well typed, as shown by the top three rules
in Fig. 11. However, if it is a checked pointer ptrc ω, we
need to ensure that what it points to in the heap is of the
appropriate pointed-to type (ω), and also recursively ensure
that any literal pointers reachable this way are also well-typed.
This is captured by the bottom rule in the figure, which states
that for every location n + i in the pointers’ range [n, n +
size(ω)), where size yields the size of its argument, then the
value at the location H (n+ i) is also well-typed. However, as
heap snapshots can contain cyclic structures (which would lead
to infinite typing deriviations), we use a scope σ to assume
that the original pointer is well-typed when checking the types
of what it points to. The middle rule then accesses the scope
to tie the knot and keep the derivation finite, just like in Ruef
et al. [21].

Type Rules for Constants and Variables:

T-VAR
x : τ ∈ Γ

Γ; Θ `m x : τ

T-CONST
FV (τ) = ∅ ∅ ` n : τ

Γ; Θ `m n :τ : τ

Rules for Checking Constant Pointers In Heap:

σ ` n : int σ ` n : ptru ω σ ` 0 : ptrc ω

n :ptrc ω ∈ σ
σ ` n : ptrc ω

∀i ∈ [0, size(ω)).σ ∪ {(n : ptrc ω)} ` H (n+ i)

σ ` n : ptrc ω

Fig. 11: Type Rules for Checking Constants/Variables

B. Other Semantic Rules

Fig. 12 shows the remaining semantic rules for
CORECHKC. We explain a selected few rules in this
subsection.

Rule S-VAR loads the value for x in stack ϕ. Rule S-
DEFARRAY dereferences an array pointer, which is similar
to the Rule S-DEFARRAY in Fig. 4. The only difference is
that the range of 0 is at [nl, nh) not [nl, nh], meaning that one
cannot dereference the upper-bound position in an array. Rules
DEFARRAYBOUND and DEFNTARRAYBOUND describe an
error case for a dereference operation. If we are dereferencing

an array/NT-array pointer and the mode is c, 0 must be in the
range from nl to nh; if not, the system results in a bounds

error. Obviously, the dereference of an array/NT-array pointer
also experiences a null state transition if n ≤ 0.

Rules S-MALLOC and S-MALLOCBOUND describe the
malloc semantics. Given a valid type ωa that contains no
free variables, alloc function returns an address pointing at
the first position of an allocated space whose size is equal
to the size of ωa, and a new heap snapshot H ′ that marks
the allocated space for the new allocation. The malloc is
transitioned to the address n with the type ptrc ωa and new
updated heap. It is possible for malloc to transition to a
bounds error if the ωa is an array/NT-array type [(nl, nh) τ ]κ,
and either nl 6= 0 or nh ≤ 0.

C. Subtyping for dependent types

The subtyping relation given in Fig. 7 involves dependent
bounds, i.e., bounds that may refer to variables. To decide
premises b ≤ b′, we need a decision procedure that accounts
for the possible values of these variables. This process con-
siders Θ, tracked by the typing judgment, and ϕ, the current
stack snapshot (when performing subtyping as part of the type
preservation proof). We

Definition 5 (Inequality):

• n ≤ m if n is less than or equal to m.
• x+ n ≤ x+m if n is less than or equal to m.
• All other cases result in false.
To capture bound variables in dependent types, the

Checked C subtyping relation (v) is parameterized by a
restricted stack snapshot ϕ|ρ and the predicate map Θ, where
ϕ is a stack and ρ is a set of variables. ϕ|ρ means to restrict
the domain of ϕ to the variable set ρ. Clearly, we have the
relation: ϕ|ρ ⊆ ϕ. The meaning of v being parameterized
by ϕ|ρ refers to that when we compare two bounds b ≤ b′,
we actually do ϕ|ρ(b) ≤ ϕ|ρ(b′) by interpreting the variables
in b and b′ with possible values in ϕ|ρ. Let’s define a subset
relation � for two restricted stack snapshot ϕ|ρ and ϕ′|ρ:

Definition 6 (Subset of Stack Snapshots): Given two ϕ|ρ and
ϕ′|ρ, ϕ|ρ � ϕ′|ρ, iff for x ∈ ρ and y, (x, y) ∈ ϕ|ρ ⇒ (x, y) ∈
ϕ′|ρ.

For every two restricted stack snapshots ϕ|ρ and ϕ′|ρ, such
that ϕ|ρ � ϕ′|ρ, we have the following theorem in Checked C
(proved in Coq):

Theorem 5 (Stack Snapshot Theorem): Given two types τ
and τ ′, two restricted stack snapshots ϕ|ρ and ϕ′|ρ, if ϕ|ρ �
ϕ′|ρ, and τ v τ ′ under the parameterization of ϕ|ρ, then τ v
τ ′ under the parameterization of ϕ′|ρ.

Clearly, for every ϕ|ρ, we have ∅ � ϕ|ρ. The type checking
stage is a compile-time process, so ϕ|ρ is ∅ at the type
checking stage. Stack snapshots are needed for proving type
preserving, as variables in bounds expressions are evaluated
away.

As mentioned in the main text, v is also parameterized by
Θ, which provides the range of allowed values for a bound
variable; thus, more v relation is provable. For example, in



S-VAR
(ϕ,H , x) −→ (ϕ,H , ϕ(x))

S-DEFARRAY
H (n) = na :τa 0 ∈ [nl, nh)

(ϕ,H , *n :ptrc [(nl, nh) τ ]nt) −→ (ϕ,H , na :τ)

S-DEFARRAYBOUND
0 6∈ [nl, nh)

(ϕ,H , *n :ptrc [(nl, nh) τ ]κ) −→ (ϕ,H , bounds)

S-DEFNTARRAYBOUND
0 /∈ [nl, nh]

(ϕ,H , *n :ptrc [(nl, nh) τ ]nt) −→ (ϕ,H , bounds)

S-ASSIGN
H (n) = na :τa

(ϕ,H , *n :ptrc τ =n1 :τ1) −→ (ϕ,H [n 7→ n1 :τ ], n1 :τ)

S-ASSIGNNULL
(ϕ,H , *0:ptrc ω =n1 :τ1) −→ (ϕ,H , null)

S-ASSIGNARRBOUND
0 6∈ [nl, nh)

(ϕ,H , *n :ptrc [(nl, nh) τ ]κ =n1 :τ1) −→ (ϕ,H , bounds)

S-MALLOC
ϕ(ω) = ωa alloc(H , ωa) = (n,H ′)

(ϕ,H , malloc(ω)) −→ (ϕ,H ′, n :ptrc ωa)

S-MALLOCBOUND
ϕ(ω) = [(nl, nh) τ ]κ (nl 6= 0 ∨ nh ≤ 0)

(ϕ,H , malloc(ω)) −→ (ϕ,H ′, bounds)

S-IFT
n 6= 0

(ϕ,H , if (n :τ) e1 else e2) −→ (ϕ,H , e1)

S-IFF
(ϕ,H , if (0 :τ) e1 else e2) −→ (ϕ,H , e2)

S-UNCHECKED
(ϕ,H , unchecked n :τ −→ (ϕ,H , n :τ)

S-STR
0 ∈ [nl, nh] H (n+ na) = 0 (∀i.n ≤ i < n+ na ⇒ (∃ni ti.H (n+ i) = ni :τi ∧ ni 6= 0))

(ϕ,H , strlen(n :ptrm [(nl, nh) τ ])) −→ (ϕ,H , na :int)

S-STRBOUNDS
0 /∈ [nl, nh]

(ϕ,H , strlen(n :ptrc [(nl, nh) τ ])) −→ (ϕ,H , bounds)

S-STRNULL
(ϕ,H , strlen(0 :ptrc [(nl, nh) τ ])) −→ (ϕ,H , null)

S-ADD
n = n1 + n2

(ϕ,H , n1 :int + n2 :int) −→ (ϕ,H , n)

S-ADDARR
n = n1 + n2 n′l = nl − n2 n′h = nh − n2

(ϕ,H , n1 :ptrm [(nl, nh) τ ]κ + n2 :int) −→ (ϕ,H , n :ptrm [(n′l, n
′
h) τ ]κ)

n
S-ADDARRNULL
(ϕ,H , 0:ptrc [(nl, nh) τ ]κ + n2 :int) −→ (ϕ,H , null)

Fig. 12: Remaining CORECHKC Semantics Rules (extends Fig. 4)

Fig. 5, the strlen operation in line 4 turns the type of a

to be ptrc [(0, x) int]nt and extends the upper bound to
x. In the strlen type rule, it also inserts a predicate x≥
0 in Θ; thus, the cast operation in line 16 is valid because
ptrc [(0, x) int]nt v ptrc [(0, 0) int]nt is provable when
we know n≥ 0.

Note that if ϕ and Θ are ∅, we do only the syntactic
≤ comparison; otherwise, we apply ϕ to both sides of v,
and then determine the ≤ comparasion based on a Boolean
predicate decision procedure on top of Θ. This process allows
us to type check both an input expression and the intermediate
expression after evaluating an expression.

D. Other Type Rules

Here we show the type rules for other Checked C operations
in Fig. 13.

Rule T-DEF is for dereferencing a non-array pointer. The
statement m ≤ m′ relates the unchecked region for a term
with its sub-terms. We require that if the sub-term has an
unchecked region, so does the whole term. Rule T-MAC deals

with malloc operations. There is a well-formedness check
to require that the possible bound variables in ω must be in
the domain of Γ (see Fig. 15). Rule T-ADD deals with binary
operations whose sub-terms are integer expressions, while rule
T-IND serves the case for pointer arithmetic. For simplicity, in
the Checked C formalization, we do not allow arbitrary pointer
arithmetic. The only pointer arithmetic operations allowed are
the forms shown in rules T-IND and T-INDASSIGN in Fig. 13.
Rule T-ASSIGN is for assigning a value to a non-array pointer
location. The predicate τ ′ v τ requires that the value being
assigned is a subtype of the pointer type. The T-INDASSIGN
rule is an extended assignment operation for handling assign-
ments for array/NT-array pointers with pointer arithmetic. Rule
T-UNCHECKED type checks unchecked blocks.

E. Struct Pointers
Checked C has struct types and struct pointers. Fig. 14

contains the syntax of struct types as well as new sub-
typing relations built on the struct values. For a struct

typed value, Checked C has a special operation for it,



T-DEF

Γ; Θ `m e : ptrm
′
τ m ≤ m′

Γ; Θ `m *e : τ

T-MAC
Γ; Θ `m malloc(ω) : ptrc ω

T-ADD
Γ; Θ `m e1 : int Γ; Θ `m e2 : int

Γ; Θ `m (e1 + e2) : int

T-IND

Γ; Θ `m e1 : ptrm
′

[β τ ]κ Γ; Θ `m e2 : int m ≤ m′

Γ; Θ `m *(e1 + e2) : τ

T-ASSIGN

Γ; Θ `m e1 : ptrm
′
τ

Γ; Θ `m e2 : τ ′ τ ′ v τ m ≤ m′

Γ; Θ `m *e1 = e2 : τ

T-INDASSIGN

Γ; Θ `m e1 : ptrm
′

[β τ ]κ
Γ; Θ `m e2 : int Γ; Θ `m e3 : τ ′ τ ′ v τ m ≤ m′

Γ;σ `m *(e1 + e2) = e3 : τ

T-UNCHECKED
Γ; Θ `u e : τ

Γ; Θ `m unchecked e : τ

Fig. 13: Remaining CORECHKC Type Rules (extends Fig. 6)

which is &e→f . This operation indexes the f -th position
struct T item, if the expression e is evaluated to a struct

pointer ptrm struct T . Rule T-STRUCT in Fig. 14 de-
scribes its typing behavior. Rules S-STRUCTCHECKED and
S-STRUCTUNCHECKED describe the semantic behaviors of
&e→f on a given struct checked/unchecked pointers,
while rule S-STRUCTNULL describes a checked struct null-
pointer case. In our Coq/Redex formalization, we include the
struct values and the operation &e→f . We omit it in the
main text due to the paper length limitation.

F. The Compilation Rules

Fig. 19 and Fig. 20 shows the syntax for COREC, the
target language for compilation. We syntactically restrict the
expressions to be in A-normal form because that is the type of
expression our compiler produces. To allow explicit runtime
checks, we include bounds and null as part of COREC
expressions which, once evaluated, result in an corresponding
error state. x = ȧ is a new syntactic form that modifies the
stack variable x with the result of ȧ. It is essential for bounds
widening. ≤ and − are introduced to operate on bounds and
decide whether we need to halt with a bounds error or widen
a null-terminated string.

COREC does not include any annotations. We remove
structs from COREC because we can always statically convert
expressions of the form &n : τ→f into n + nf , where nf

Struct Syntax:

Type struct T

Structdefs D ∈ T ⇀ fs

Fields fs ::= τ f | τ f; fs

Struct Subtype:

D(T ) = fs ∧ fs(0) = nat⇒ ptrm struct T v ptrm nat

D(T ) = fs ∧ fs(0) = nat ∧ 0 ≤ bl ∧ bh ≤ 1

⇒ ptrm struct T v ptrm [(bl, bh) nat]

Struct Type Rule:

T-STRUCT
Γ; Θ `m e : ptrm struct T D(T ) = fs fs(f) = τf

Γ; Θ `m &e→f : ptrm τf

Struct Semantics:

S-STRUCTCHECKED
n > 0 D(T ) = fs fs(f) = τa na = index(fs, f)

(ϕ,H ,&n :ptrc struct T→f) −→ (ϕ,H , na :ptrc τa)

S-STRUCTNULL
n = 0

(ϕ,H ,&n :ptrc struct T→f) −→ (ϕ,H , null)

S-STRUCTUNCHECKED
D(T ) = fs fs(f) = τa na = index(fs, f)

(ϕ,H ,&n :ptru struct T→f) −→ (ϕ,H , na :ptru τa)

Fig. 14: CORECHKC Struct Definitions

Γ ` n
x : int ∈ Γ

Γ ` x+ n

Γ ` bl Γ ` bh
Γ ` (bl, bh)

Γ ` int

Γ ` β Γ ` τ
Γ ` ptr

m [β τ ]κ

Γ ` τ
Γ ` ptr

m τ

T ∈ D
Γ ` ptr

m
struct T

Fig. 15: Well-formedness for types and bounds

is the statically determined offset of f within the struct. We
ellide the semantics of COREC because it is self-evident and
mirrors the semantics CORECHKC. The difference is that in
COREC, only bounds and null can step into an error state.
All failed dereferences and assignments would result in a stuck
state and therefore we rely on the compiler to explicitly insert
checks for checked pointers.

Fig. 23 and Fig. 24 shows the rules for the compilation
judgment for expressions,

Γ; ρ ` e� Ċ, ȧ

The judgment is presented differently from the one in Sec. IV,
which was simplified for presentation purposes. First, we
remove Θ and m because these parameters are only used
for checking and have no impact on compilation. Second,
the judgment includes two outputs, a closure Ċ and an atom
expression ȧ, instead of a single COREC expression ė. Ċ can



Γ ` x : τ Γ[x 7→ τ ] ` τ Γ[x 7→ τ ]; Θ `c e : τ

Γ ` τ (x : τ) e
Γ ` ·

Γ ` τ Γ[x 7→ τ ] ` x : τ

Γ ` x : τ, x : τ

Fig. 16: Well-formedness for functions

Γ ` τ
Γ ` τ f

Γ ` τ Γ ` fs
Γ ` τ f; fs

Fig. 17: Well-formedness for structs

Γ[x 7→ τ ]; ∅ ` e� ė : τ

Γ ` τ (x : τ) e� (x) ė

Fig. 18: Compilation rules for functions

be intuitively understood as a partially constructed program or
context. Whereas Ė is used for evaluation, Ċ is used purely
as a device for compilation. As an example, when compiling
(1 : int) + (2 : int), we would first create a fresh variable x,
and then produce two outputs:

Ċ = let x = 1 + 2 in �

ȧ = x

To obtain the compiled expression ė, we plug ȧ into Ċ using
the usual notation Ċ[ȧ]. We can also use Ċ to represent
runtime checks, which usually take the form let x = ċ in �,
where ċ contains the check whose evaluation must not trigger
bounds or null for the program to continue (see Fig. 22 for
the metafunctions that create those checks).

This unconventional output format enables us to separate
the evaluation of the term and the computation that relies
on the term’s evaluated result. Since effects and reduction
(except for variables) happen only within closures, we can
precisely control the order in which effects and evaluation
happen by composing the contexts in a specific order. Given
two closures Ċ1 and Ċ2, we write Ċ1[Ċ2] to denote the meta
operation of plugging Ċ2 into Ċ1. We also use Ċa;b;c as a
shorthand for Ċa[Ċb[Ċc]]. In the C-IND rule, we first evaluate
the expressions that correspond to e1 and e2 through Ċ1 and
Ċ2, and then perform a null check and an addition through
Ċn and Ċ3. Finally, we dereference the result through Ċ4

before returning the pair Ċ4, ẋ4, propagating the flexibility
to the compilation rule that recursively calls C-IND.

Fig. 22 shows the metafunctions that create closures repre-
senting dynamic checks. These functions first examine whether
the pointer is a checked. If the pointer is unchecked, an empty
closure � will be returned, because there is no need to perform
a check. For bounds checking, there is a special case for NT-
array pointers, where the bounds are retrived from the ghost

Atoms ȧ ::= n | x
C-Expressions ċ ::= ȧ | strlen(ȧ) | malloc(ȧ) | f(ȧ)

| | ȧ ◦ ȧ | *ȧ
| *ȧ = ȧ | x = ȧ | if (ȧ) ė else ė
| bounds | null

Expressions ė ::= ċ | let x = ċ in ė
Binops ◦ ::= + | − |≤
Closure Ċ ::= � | let x = ȧ in Ċ

| if (ȧ) ė else Ċ | if (ȧ) Ċ else ė
Bounds Map ρ ∈ Var⇀ Var× Var

Fig. 19: COREC Syntax

µ̇ ::= n | ⊥
ċ ::= . . . | ret(x, µ̇, ė)

Ḣ ∈ Z⇀ Z
ṙ ::= ė | null | bounds
Ė ::= � | let x = Ė in ė | ret(x, i, Ė)

| if (Ė) ė else ė | strlen(Ė)

| malloc(Ė) | f(Ė) | Ė ◦ ȧ | n ◦ Ė
| *Ė | *Ė = ȧ | *n = Ė | x = Ė

Ė ::= Ė | n, Ė | Ė, ȧ

Fig. 20: COREC Semantic Defs

variables (found by looking up ρ) on the stack rather than
using the bounds specified in the type annotation. This is how
we achieve the same precise runtime behavior as CORECHKC
in our compiled expressions.

Fig. 21 shows the metafunctions related to bounds widening.
`extend takes ρ, a checked NT-array pointer variable x, and its
bounds (bl, bh) as inputs, and returns an extended ρ′ that maps
x to two fresh variables xl, xh, together with a closure Ċ that
initializes xl and xh to bl and bh respectively. This function is
used in the C-LET rule to extend ρ before compiling the body
of the let binding. The updated ρ′ can be used for generating
precise bounds checks, and for inserting expressions that can
potentially widen the upper bounds, as seen in the `widenstr
metafunction used in the C-STR compilation rule.



xl, xh = fresh ρ′ = ρ[x 7→ (xl, xh)] Ċ = let xl = bl in let xh = bh in �

Ċ, ρ′ = `extend ρ, x, ptrc [(bl, bh) τ ]nt

xl, xh = ρ(x) xw = fresh Ċ = let xw = if (xh) 0 else xh = 1 in �

Ċ = `widenderef ρ, x, ptrc [(bl, bh) τ ]nt

e /∈ dom(ρ)

� = `widenstr ρ, e, ȧ, ptrm [β τ ]nt

xl, xh = ρ(e) xa = fresh Ċ = let xa = if (ȧ ≤ xh) 0 else xh = ȧ in �

Ċ = `widenstr ρ, e, ȧ, ptrc [β τ ]nt

Fig. 21: Metafunctions for widening

x = fresh Ċ = let x = if (ȧ) 0 else null in �

Ċ = `null ȧ, c
� = `null ȧ, u

� = `boundsR ρ, e, ptru [β τ ]κ, ȧ

xl, xh = ρ(e)

xcl, xch = fresh Ċcl = let xcl = if (xl ≤ ȧ) 0 else bounds in � Ċch = let xch = if (ȧ ≤ xh) 0 else bounds in �

Ċcl;ch = `boundsR ρ, e, ptrc [β τ ]κ, ȧ

e /∈ dom(ρ) xl, xh, xcl, xch = fresh Ċl = let xl = bl in �
Ċh = let xh = bh in � Ċcl = let xcl = if (xl ≤ ȧ) 0 else bounds in � Ċch = let xch = if (ȧ ≤ xh) 0 else bounds in �

Ċl;h;cl;ch = `boundsR ρ, e, ptrc [(bl, bh) τ ]nt, ȧ

e /∈ dom(ρ) xl, xh, xcl, xch = fresh Ċl = let xl = bl in �
Ċh = let xh = bh in � Ċcl = let xcl = if (xl ≤ ȧ) 0 else bounds in � Ċch = let xch = if (xh ≤ ȧ) bounds else 0 in �

Ċl;h;cl;ch = `boundsR ρ, e, ptrc [(bl, bh) τ ], ȧ

� = `boundsW ρ, e, ptru [β τ ]κ, ȧ

xl, xh = ρ(e)

xcl, xch = fresh Ċcl = let xcl = if (xl ≤ ȧ) 0 else bounds in � Ċch = let xch = if (ȧ ≤ xh) 0 else bounds in �

Ċcl;ch = `boundsW ρ, e, ptrc [β τ ]κ, ȧ

e /∈ dom(ρ) xl, xh, xcl, xch = fresh Ċl = let xl = bl in �
Ċh = let xh = bh in � Ċcl = let xcl = if (xl ≤ ȧ) 0 else bounds in � Ċch = let xch = if (xh ≤ ȧ) bounds else 0 in �

Ċl;h;cl;ch = `boundsW ρ, e, ptrc [(bl, bh) τ ]κ, ȧ

e /∈ dom(ρ) xl, x
′
l, xh, x

′
h = fresh Ċ1 = let xl = bl in let xh = bh in �

Ċ2 = let x′l = b
′
l in let x′h = b

′
h in � Ċ3 = if (x′l ≤ xl) � else bounds Ċ4 = if (xh ≤ x′h) � else bounds

Ċ1;2;3;4 = `boundsD ρ, e, ptrm [(bl, bh) τ ]κ, ptr
m [(b′l, b

′
h) τ ]κ

x′l, x
′
h = ρ(e) xl, xh = fresh

Ċ1 = let xl = bl in let xh = bh in � Ċ2 = if (x′l ≤ xl) � else bounds Ċ3 = if (xh ≤ x′h) � else bounds

Ċ1;2;3 = `boundsD ρ, e, ptrm [(bl, bh) τ ]κ, ptr
m [(b′l, b

′
h) τ ]κ

Fig. 22: Metafunctions for dynamic checks



C-CONST
Γ; ρ ` n :τ � �, n : τ

C-VAR
x : τ ∈ Γ

Γ; ρ ` x� �, x : τ

C-CAST
Γ; ρ ` e� Ċ, ȧ : τ ′

Γ; ρ ` (τ)e� Ċ, ȧ : τ

C-DYNCAST
Γ; ρ ` e� Ċ1, ȧ : ptrm [β′ τ ]κ Ċb = `boundsD ρ, e, ptrm [β τ ]κ, ptr

m [β′ τ ]κ

Γ; ρ ` 〈ptrm [β τ ]κ〉e� Ċ1;b, ȧ : ptrm [β τ ]κ

C-STR
Γ; ρ ` e� Ċ1, ȧ1 : ptrm [β τa]nt Ċn = `null ȧ1,m Ċb = `boundsR ρ, ȧ1, ptrm [β τa]nt, 0

x2 = fresh Ċ2 = let x2 = strlen(ȧ1) in � Ċw = `widenstr ρ, e, ȧ1, ptrm [β τa]nt

Γ; ρ ` strlen(e)� Ċ1;n;b;2;w, x2 : int

C-LETSTR
Γ(y) = ptr

c [(bl, bh) τa]nt x 6∈ FV (τ)

Γ; ρ ` strlen(y)� Ċ1, ȧ1 : int Ċ2 = let x = ȧ1 in � Γ[x 7→ int, y 7→ [ptrc [(bl, x) τa]nt]]; ρ ` e3 � Ċ3, ȧ3 : τ

Γ; ρ ` let x = strlen(y) in e� Ċ1;2;3, ȧ3 : τ

C-IF
Γ; ρ ` e� Ċ1, ȧ1 : τ

Γ; ρ ` e1 � Ċ2, ȧ2 : τ2 Γ; ρ ` e3 � Ċ3, ȧ3 : τ3 x4 = fresh Ċ4 = let x4 = if (ȧ1) Ċ2[ȧ2] else Ċ3[ȧ3] in �

Γ; ρ ` if (e1) e2 else e3 � Ċ4, x4 : τ2 t τ3

C-IFNT
Γ; ρ ` x : ptrc [(bl, bh) τ ]nt bh = 0⇒ Γ′ = Γ[x 7→ ptr

c [(bl, 1) τ ]nt]

bh 6= 0⇒ Γ′ = Γ Γ; ρ ` *x� Ċ1, ȧ1 : τ1 Γ′; ρ ` e2 � Ċ2, ȧ2 : τ2 Γ; ρ ` e3 � Ċ3, ȧ3 : τ3
Ċw = `widenderef ρ, x, ptrc [(bl, bh) τ ]nt x4 = fresh Ċ4 = let x4 = if (ȧ1) Ċ2;w[ȧ2] else Ċ3[ȧ3] in �

Γ; ρ ` if (*x) e1 else e2 � x4, Ċ4 : τ1 t τ2

C-LET
(x ∈ FV (τ ′)⇒ e1 ∈ Bound)

Γ; ρ ` e1 � Ċ1, ȧ1 : τ1 Ċ2, ρ
′ = `extend ρ, x, τ1 Ċ3 = let x = ȧ1 in � Γ[x 7→ τ ]; ρ′ ` e4 � Ċ4, ȧ4 : τ4

Γ; ρ′ ` let x = e1 in e4 � Ċ1;2;3;4, ȧ4 : τ4[τ1 = int⇒ x 7→ e1]

C-RET
Γ(x) 6= ⊥ Γ; ρ ` e� Ċ1, ȧ1 : τ x2 = fresh µ� µ̇ Ċ2 = let x2 = ret(x, µ̇, Ċ1[ȧ1]) in �

Γ; ρ ` ret(x, µ, e)� Ċ2, x2 : τ

C-FUN
Ξ(f) = τ (x : τ) e (∀ei ∈ e τi ∈ τ . Γ; ρ ` ei � Ċi, ȧi : τ ′i ∧ τ ′i v τi[e/x]) xf = fresh Ċf = let xf = f(a) in �

Γ; ρ ` f(e)� Ċ[Ċf ], xf : τ [e/x]

C-DEF
Γ; ρ ` e1 � Ċ1, ȧ1 : ptrm τ Ċn = `null ȧ1,m x2 = fresh Ċ2 = let x2 = *ȧ1 in �

Γ; ρ ` *e1 � Ċ1;n;2, x2 : τ

C-DEFARR
Γ; ρ ` e1 � Ċ1, ȧ1 : ptrm [(bl, bh) τ ]κ

Ċn = `null ȧ1,m Ċb = `boundsR ρ, e1, ptrm [(bl, bh) τ ]κ, 0 x2 = fresh Ċ2 = let x2 = *ȧ1 in �

Γ; ρ ` *e1 � Ċ1;n;b;2, x2 : τ

C-MAC
Ċ1, ȧ1 = sizeof(ω) x2 = fresh Ċ2 = let x2 = malloc(ȧ1) in �

Γ; ρ ` malloc(ω)� Ċ1;2, x2 : ptrc ω

Fig. 23: Compilation



C-ADD
Γ; ρ ` e1 � Ċ1, ȧ1 : int Γ; ρ ` e2 � Ċ2, ȧ2 : int x3 = fresh Ċ3 = let x3 = ȧ1 + ȧ2 in �

Γ; ρ ` Ċ3, x3 : int

C-IND
Γ; ρ ` e1 � Ċ1, ȧ1 : ptrm [β τ ]κ Γ; ρ ` e2 � Ċ2, ȧ2 : int Ċn = `null ȧ1,m

Ċb = `boundsR ρ, e1, ptrm [β τ ]κ, ȧ2 x3, x4 = fresh Ċ3 = let x3 = ȧ1 + ȧ2 in � Ċ4 = let x4 = *x3 in �

Γ; ρ ` *(e1 + e2)� Ċ1;2;n;3;b;4, x4 : τ

C-ASSIGN

Γ; ρ ` e1 � Ċ1, ȧ1 : ptrm
′
τ

Ċn = `null ȧ1,m Γ; ρ ` e2 � Ċ2, ȧ2 : τ ′ τ ′ v τ x3 = fresh Ċ3 = let x3 = *ȧ1 = ȧ2 in �

Γ; ρ ` *e1 = e2 � Ċ1;2;n;3, x3 : τ

C-ASSIGNARR

Γ; ρ ` e1 � Ċ1, ȧ1 : ptrm
′

[β τ ]κ Ċn = `null ȧ1,m
Ċb = `boundsW ρ, e1, ptr

m [(bl, bh) τ ]κ, 0 Γ; ρ ` e2 � Ċ2, ȧ2 : τ ′ x3 = fresh Ċ3 = let x3 = *ȧ1 = ȧ2 in � τ ′ v τ
Γ; ρ ` *e1 = e2 � Ċ1;2;n;b;3, x3 : τ

C-INDASSIGN
Γ; ρ ` e1 � Ċ1, ȧ1 : ptrm [β τ ]κ Γ; ρ ` e2 � Ċ2, ȧ2 : int Ċn = `null ȧ1,m Ċb = `boundsW ρ, e1, ptr

m [β τ ]κ, ȧ2
Γ; ρ ` e3 � Ċ3, ȧ3 : τ ′ x4, x5 = fresh Ċ4 = let x4 = ȧ1 + ȧ2 in � Ċ5 = let x5 = *x4 =x3� in τ ′ v τ

Γ; ρ ` *(e1 + e2) = e3 � Ċ1;2;n;3;4;b;5 : τ

C-STRUCT
Γ; ρ ` e1 � Ċ1, ȧ1 : ptrm struct T

D(T ) = τ0 f0 . . . ; τj f ; ... Ċn = `null ȧ1,m x2 = fresh Ċ2 = let x2 = ȧ1 + j̇ in �

Γ; ρ ` &e1→f � Ċ2, x2 : ptrm τf

C-UNCHECKED
Γ; ρ ` e� Ċ, ȧ : τ

Γ; ρ ` unchecked e� Ċ, ȧ : τ

Fig. 24: Compilation (continued)


