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Abstract. Property-based testing uses randomly generated inputs to
validate high-level program specifications. It can be shockingly effec-
tive at finding bugs, but it often requires generating a very large set of
inputs to do so. In this paper, we apply ideas from combinatorial test-
ing, a powerful and widely studied testing methodology, to modify the
distributions of our random generators and find bugs with fewer tests.
The key concept is combinatorial coverage, which measures the degree
to which a given set of tests exercises every possible choice of values for
every small combination of inputs.

In its “classical” form, combinatorial coverage only applies to programs
taking inputs of a very constrained shape: essentially, a Cartesian prod-
uct of finite sets. We generalize combinatorial coverage to the richer world
of algebraic data types by formalizing a class of sparse test descriptions
based on regular tree expressions. This new definition of coverage inspires
a novel combinatorial thinning algorithm for improving the coverage of
random test generators, requiring many fewer tests to catch bugs. We
evaluate the new method on two case studies, a typed evaluator for Sys-
tem F terms and a Haskell compiler, showing significant improvements
in both.
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1 Introduction

Property-based testing, popularized by tools like QuickCheck [6], is a principled
way of testing software that focuses on functional specifications rather than lists
of input-output examples. A property is a formula like

∀x. P (x, f(x)),

where f is the function under test, and P is some executable logical relation-
ship between an input x and the output f(x). The test harness generates ran-
dom values for x, hoping to either uncover a counterexample—an x for which
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¬P (x, f(x))), indicating a bug—or else provide confidence that f is correct with
respect to P .

With a well designed random test case generator, property-based testing has a
non-zero probability of generating every valid test case (up to a given size limit);
property-based testing is thus guaranteed to find every possible bug that can
be provoked by an input below the size limit... eventually. Unfortunately, since
each input is generated independently, random testing may end up repeating
the same or similar tests many times before happening across the specific input
which provokes a bug. This poses a particular problem in settings like continuous
integration, where feedback is needed quickly—ideally, there should be a way to
guide the generator to a more interesting and diverse set of inputs, “thinning”
the distribution to find bugs with fewer tests.

Combinatorial testing, a popular approach to testing from the systems lit-
erature [2, 13, 14], offers an attractive metric for judging which tests are most
interesting. In its classical presentation, combinatorial testing advocates choos-
ing tests to maximize t-way coverage of a program’s input space—i.e., to exercise
all possible choices of concrete values for every combination of t input parame-
ters. For example, suppose a program p takes Boolean parameters w, x, y, and
z, and suppose we want to test that p behaves well for for every choice of values
for every pair of these four parameters. If we choose carefully, we can check all
such choices—all 2-way interactions—with just five test cases:

1. w = False x = False y = False z = False

2. w = False x = True y = True z = True

3. w = True x = False y = True z = True

4. w = True x = True y = False z = True

5. w = True x = True y = True z = False

You can check for yourself: for any two parameters, every combination of values
for these parameters is covered by some test. For example,

“w = False and x = False”

is covered by #1, while both

“w = True and x = True” and “w = True and y = True”

are covered by #5. Thus, we get 100% pairwise coverage with just five out of
the 24 = 16 possible inputs.

Why is this interesting? Because bugs in real systems are often provoked by
specific choices of just a few parameters. Indeed, a survey of a variety of real-
world systems found that testing all 2-way parameter interactions could catch
up to 93% of bugs; the same survey concluded that testing all 6-way interactions
might be sufficient to catch essentially all bugs in practice [13].

If combinatorial coverage can be used to concentrate bug-finding power into
small sets of tests, it is natural to wonder whether it could also be used to thin the
distribution of a random generator. So far, however, combinatorial testing has
mostly been applied in settings where the input to a program is just a vector
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of parameters, each drawn from a small finite set. Could we take it further?
In particular, could we apply ideas from combinatorial testing to the setting
addressed by QuickCheck—functional programs whose inputs are drawn from
structured, potentially infinite data types like lists and trees?

Our first contribution is showing how to generalize the definition of combi-
natorial coverage to work with regular tree expressions, which themselves gen-
eralize the algebraic data types found in most functional languages. Instead of
covering combinations of parameter choices, we measure coverage of test de-
scriptions—concise representations of sets of tests, encoding potentially inter-
esting interactions between data constructors. For example, the test description
cons(true, �false) describes the set of Boolean lists that have true as their first
element, followed by at least one false somewhere in the tail.

Our second contribution is a method for enhancing property-based testing
using combinatorial coverage. We propose an algorithm that uses combinato-
rial coverage information to thin an existing random generator, leading it to
more interesting test suites that find bugs more often. A concrete realization
of this algorithm in a tool called QuickCover was able, in our experiments, to
guide random generation to find bugs using an average of 10× fewer tests than
QuickCheck. While generating test suites is considerably slower, this cost can
be amortized over many runs of the test suite, for example in a continuous-
integration setting.

In summary, we offer these major contributions:

– We generalize the notion of combinatorial coverage to work over a set of
test descriptions and show how this new definition generalizes to algebraic
data types with the help of regular tree expressions (Section 3). Section 4
describes the technical details behind the specific way we choose to represent
these descriptions.

– We propose a process for guiding the test distribution of an existing random
generator based on our generalized notion of combinatorial coverage (Section
5).

– Finally, we demonstrate, with two case studies, that QuickCover can find
bugs using significantly fewer tests (Section 6) than pure random testing.

We conclude with an overview of related work (Section 7), and ideas for future
work (Section 8). To set the stage, we begin with a brief review of “classical”
combinatorial testing.

2 Classical Combinatorial Testing

Combinatorial testing measures the “combinatorial coverage” of test suites, aim-
ing to find more bugs with fewer tests. Standard presentations of combinatorial
testing [13] are phrased in terms of a number of separate input parameters; here,
for notational consistency with the rest of the paper, we will instead assume that
a program takes a single input consisting of a tuple of values.
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Assume we are given some finite set C of constructors, and consider the set
of n-tuples over C:

{tuplen(C1, . . . , Cn) | C1, . . . , Cn ∈ C}

(The “constructor” tuplek is not strictly needed in this section, but it makes
the generalization to constructor trees and tree regular expressions in Section 3
smoother.) We can use these tuples to represent test inputs to systems. For
example a web application might be tested under a configuration

tuple4(Safari, MySQL, Admin, English)

in order to verify some end-to-end property of the system.
A specification of a set of tuples is written informally using notation like:

tuple4(Safari+Chrome, Postgres+MySQL, Admin+User, French+English)

This specification restricts the set of valid tests to those that have valid browsers
in the first position, valid databases in the second, and so on. Specifications are
thus a lot like types—they pick out a set of valid tests from some larger set. We
make this notion of specification more formal and concrete in Section 3.

To define combinatorial coverage, we introduce the notion of partial tuples—
tuples where some elements are left indeterminate (written >). For example:

tuple4(Chrome, >, Admin, >).

A description is compatible with a specification if its concrete (non->) construc-
tors are valid in the positions where they appear. Thus, the description above is
compatible with our web-app configuration specification, while this one is not:

tuple4(MySQL, MySQL, French, >)

We say a test covers a description—which, conversely, describes the test—
when the tuple matches the description in every position that does not contain
>. For example, the description

tuple4(Chrome, >, Admin, >)

describes these tests:

tuple4(Chrome, MySQL, Admin, English)

tuple4(Chrome, MySQL, Admin, French)

tuple4(Chrome, Postgres, Admin, English)

tuple4(Chrome, Postgres, Admin, French)

Finally, we call a description t-way if it fixes exactly t constructors, leaving the
rest as >.

Now, suppose a system under test takes a tuple of configuration values as
input. Given some correctness property (e.g., the system does not crash), a test
for the system is simply a particular tuple, while a test suite is a set of tuples.
We can then define combinatorial coverage as follows:
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Definition 1. The t-way combinatorial coverage of a test suite is the proportion
of t-way descriptions, compatible with a given specification, that are covered by
some test in the suite.

We say that t is the strength of the coverage.
A test suite with 100% 2-way coverage for the present example can be quite

small. For example,

tuple4(Chrome, Postgres, Admin, English)

tuple4(Chrome, MySQL, User, French)

tuple4(Safari, Postgres, User, French)

tuple4(Safari, MySQL, Admin, French)

tuple4(Safari, MySQL, User, English)

achieves 100% coverage with just five tests. The fact that a single test covers
many different descriptions is what makes combinatorial testing work: while the
number of descriptions that must be covered is combinatorially large, a single
test can cover combinatorially many descriptions. In general, for a tuple of size n,
the number of descriptions is given by

(
n
t

)
ways to choose t parameters multiplied

by the number of distinct values each parameter can take on.

3 Generalizing Coverage

Of course, inputs to programs are often more complex than just tuples of enu-
merated values, especially in the world of functional programming. To apply the
ideas of combinatorial coverage in this richer world, we generalize tuples to con-
structor trees and tuple specifications to regular tree expressions. We can then
give a generalized definition of test descriptions that makes sense for algebraic
data types, setting up for a more powerful definition of combinatorial coverage.

A ranked alphabet Σ is a finite set of atomic data constructors, each with a
specified arity. For example, the ranked alphabet

Σlist(bool) , {(cons, 2), (nil, 0), (true, 0), (false, 0)}

defines the constructors needed to represent lists of Booleans. Given a ranked
alphabet Σ, the set of trees over Σ is the least set TΣ that satisfies the equation

TΣ = {C(t1, . . . , tn) | (C, n) ∈ Σ ∧ t1, . . . , tn ∈ TΣ}.

Regular tree expressions are a compact and powerful tool for specifying sets
of trees [9, 8]. They are generated by the following syntax:

e , >
| e1 + e2
| µX. e
| X
| C(e1, . . . , en) for (C, n) ∈ Σ
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Each of the operations on regular tree expressions has an analog in standard
regular expressions over strings: + corresponds to disjunction of regular expres-
sions, µ corresponds to iteration, and the parent-child relationship corresponds
to concatenation. These expressions form a rich language for describing tree
structures.

The denotation function J·K mapping regular tree expressions to sets of trees
is the least function satisfying these equations:

J>K = TΣ
JC(e1, . . . , en)K = {C(t1, . . . , tn) | ti ∈ JeiK}

Je1 + e2K = Je1K ∪ Je2K
JµX. eK = Je[µX. e/X]K

Regular tree expressions subsume standard first-order algebraic data type
definitions. For example, the Haskell definition

data BoolList = Cons Bool BoolList | Nil

is equivalent to the regular tree expression

µX. cons(true + false, X) + nil.

Crucially for our purposes, regular tree expressions can also be used to define sets
of trees that cannot be described with plain ADTs. For example, the expression

cons(true + false, nil)

denotes all single-element Boolean lists, while

µX. cons(true, X) + nil

describes the set of lists that only contain true. They can even express non-local
constraints like “true appears at some point in the list”:

µX. cons(>, X) + cons(true, µY. cons(>, Y ) + nil))

This machinery smoothly generalizes the ideas from Section 3. Tuples are
just a special form of trees, while specifications and test descriptions can be
written as regular tree expressions. This gives us most of what we need to define
algebraic data types. Recall the definition of t-way combinatorial coverage: “the
proportion of (1) t-way descriptions, (2) compatible with a given specification,
that (3) are covered by some test in the suite.” What does this mean in the
context of regular tree expressions and trees?

Condition (3) is easy: a test (i.e., a tree) t covers a test description (a regular
tree expression) d if t ∈ JdK.

For (2), consider some regular tree expression τ representing an algebraic
data type that we would like to cover. We will use τ as our specification and say
that a description d is compatible with τ if JτK∩ JdK 6= ∅. As with string regular
expressions, this can be checked efficiently.

The only remaining question is (1): which set of t-way descriptions to use.
We argue in the next section that the set of all regular tree expressions is too
broad, and we offer a simple and natural alternative.
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4 Sparse Test Descriptions

A näıve way to generalize the definition of t-way descriptions to regular tree
expressions would be to first define the size of a regular tree expression as the
number of operators (C, +, or µ) in it and then define a t-way description to be
any regular tree expression of size t. However, this approach does not specialize
nicely to the classical case; for example the description

tuple4(Safari + Chrome, >, >, >)

would be counted as “4-way” (3 constructors and 1 “+” operator), even though
it is trivially covered by every possible test. Worse, descriptions of this form are
not particularly compact. For example, the smallest possible description of lists
where true is followed by false,

µX. cons(>, X)+cons(true, µY. cons(>, Y )+cons(false, µZ. cons(>, Z)+nil))

has size t = 14. Our representation should pack as much information as possible
into small descriptions, making t-way coverage meaningful for small values of t
and increasing the complexity of the interactions captured by our definition of
coverage.

In sum, we want a definition of coverage that straightforwardly specializes
to the tuples-of-constructors case and that captures interesting structure with
smaller descriptions. Our proposed solution, described next, takes its inspiration
from temporal logic. We first encode an “eventually” (�) operator that allows us
to write the expression from above much more compactly as �cons(true, �false).
This can be read as “somewhere in the tree, there is a cons node with a true node
to its left and a false node somewhere in the tree to its right.” Then we define a
restricted form of sparse test descriptions that use just �, >, and constructors.

4.1 Encoding “Eventually”

The “eventually” operator can actually be encoded using the regular tree ex-
pression operators we have already defined—i.e., we can add it without adding
any formal power. First, define the set of templates for the ranked alphabet Σ:

T , {C(>1, . . . , >i−1, [ ], >i+1 . . . , >n) | (C, n) ∈ Σ, 1 ≤ i ≤ n}

For each constructor C in Σ, the set of templates T contains C([ ], >, . . . , >),
C(>, [ ], >, . . . , >), etc., all the way to C(>, . . . , >, [ ]), enumerating every
way to place one hole in the constructor and fill every other argument slot
with >. (We ignore null-ary constructors in T.) Then we define “next” (◦e) and
“eventually” (�e) as

◦e ,
∑
T∈T

T [e]

�e , µX. e+ ◦X
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where T [e] is the replacement of [ ] in T with e.4 The definition of ◦e says
intuitively that it describes any tree C(t1, . . . , tn) in which e describes some
direct child (i.e., t1, t2, and so on). Then, the definition of �e describes anything
that described by e, plus (unrolling the µ) anything described by ◦e, ◦◦e, and
so on.

The example from the previous section,

�cons(true, �false),
should now make more sense. Our definition of � neatly captures the “some-
where in the tree” constraints that would otherwise necessitate a large, complex
description.

4.2 Defining Coverage

Even with the eventually operator, there is still a fair amount of freedom in how
we define the set of t-way descriptions. In this section we present one possibility
that we call sparse test descriptions, which we found to be useful in practice; in
future work (Section 8) we discuss another interesting option.

We define the set of sparse test descriptions for a given Σ to be the trees
generated by

d , > | �C(d1, . . . , dn) for (C, n) ∈ Σ,
that is, trees consisting of constructors prefixed by � and>. We call these descrip-
tions “sparse” because they match specific ancestor-descendant arrangements of
constructors but place no restriction on the constructors in between, due to the
“eventually” before each constructor.

Sparse test descriptions are designed to be compact—in order to useful in
practice and compatible with the classical definition of coverage, our descrip-
tions should be as information-dense as possible. This is why sparse descriptions
do not contain the + operator: any test that covers either C(d1, . . . , dn) or
D(d1, . . . , dm) will also necessarily cover C(d1, . . . , dn) +D(d1, . . . , dm), so
we do not lose any power by removing +. Furthermore, we do not include the
µ operator directly, instead relying on �. Intuitively, � captures a pattern of re-
cursion that is general enough to express interesting non-local constraints while
keeping description complexity low. This specific format for test descriptions is
not the only possible choice with these properties, of course, but the case studies
in Section 6 show that it works well in at least two challenging domains that are
relevant to programming languages as a whole.

Finally, we can define the size of a description based on the number of con-
structors it contains. Intuitively, a t-way description is one with t constructors;
however, in order to be consistent with the classical definition, we omit construc-
tors whose types permit no alternatives. For example, all of the tuple construc-
tors (e.g. tuple4 from our running example) are left out of the size calculation.

4 This construction is why we choose to deal with finite ranked alphabets: if Σ were
infinite, T would be infinite, and ◦e would be an infinite term that is not expressible
as a standard regular tree expression.
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This makes t-way sparse test description coverage correspond directly to classical
t-way parameter interaction coverage.

Sparse test descriptions work nicely for signatures like Boolean lists:

τlist(bool) , µX. cons(true + false, X) + nil.

The set of all 2-way descriptions that are compatible with τlist(bool) is:

�cons(�true, >) �cons(�false, >) �cons(>, �nil)
�cons(>, �cons(>, >)) �cons(>, �true) �cons(>, �false)

Sparse descriptions also work as expected for types like

tuple4(Safari+Chrome, Postgres+MySQL, Admin+User, French+English).

Despite some stray occurrences of �, as in

�tuple4(�Chrome, �MySQL, >, >),

the descriptions still describe the same sets of tests as the standard tuple descrip-
tions without the uses of �. Thus, our new definition of combinatorial coverage
generalizes the classical one.

Sparse test descriptions capture a rich set of test constraints in a compact
form. The real proof of this is in the numbers—see Section 6 for those—but a
few more examples may help illustrate.

Arithmetic Expressions Consider the type of simple arithmetic expressions over
the constants 0, 1, and 2:

τexpr , µX. add(X, X) + mul(X, X) + 0 + 1 + 2.

This type has 2-way descriptions like

�add(�mul(>, >), >) and �mul(>, �add(>, >)),

which capture different nestings of addition and multiplication.

System F For a more involved example, let’s look at some 2-way sparse descrip-
tions for a much more complex data structure: terms of the polymorphic lambda
calculus, System F.

τ , U | τ1 → τ2 | n | ∀.τ
e , () | n | λτ. e | (e1 e2) | Λ. e | (e τ)

(We use de Bruijn indices for variable binding, meaning that each variable oc-
currence in the syntax tree is represented by a natural number indicating which
enclosing abstraction it was bound by.)
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There is a fair amount of freedom in representing System F syntax as a
regular tree expression. A reasonable place to start is

µX. unit+ var(Var) + abs(Type, X) + app(X, X) + tabs(X) + tapp(X, Type),

where Type is defined in a similar way and Var represents natural number
de Bruijn indices.

This already admits useful 2-way descriptions like

�app(�abs(>, >), >) and �app(�app(>, >), >),

which capture relationships between lambda abstractions and applications. In
Section 6.1, we use descriptions like these to find bugs in an evaluator for System
F expressions; they ensure that our test suite adequately covers different nestings
of abstractions and applications that might provoke bugs.

With a little domain-specific knowledge, we can make the descriptions cap-
ture even more. When setting up our case study in Section 6.2, which searches
for bugs in GHC’s strictness analyzer, we found that it was often useful to track
coverage of the seq function, which takes two functions as arguments, executes
the first for any side-effects (e.g., exceptions), and then executes the second.
Modifying our regular expression type to capture seq as a first-class constructor
results in 2-way descriptions now include interactions like

�seq(�app(>, >), >)

that encode interactions of seq with other more fundamental System F con-
structors. These interactions are crucial for finding bugs in a strictness analyzer,
since seq gives fine-grained control over the evaluation order within a particular
expression.

5 Thinning Generators with QuickCover

Having generalized the definition of combinatorial coverage to structured data
types, the next step is to explore ways of using coverage to improve property-
based testing.

When we first approached this problem, we planned to go “all-in” on the con-
ventional combinatorial testing methodology of generating covering arrays [30],
i.e., test suites with 100% t-way coverage for a given t. Rather than use an un-
bounded stream of random tests, we would test properties using only the tests
in the covering array. However, we encountered two major problems with this
approach. First, as t grows, covering arrays become frighteningly expensive to
generate. While there are efficient methods for generating covering arrays in
special cases like 2-way coverage [7], general algorithms for generating relatively
compact covering arrays are complex and often slow [19]. Second, we found that
covering arrays for sets of test descriptors in the format described above did not
do particularly well at finding bugs! In a series of preliminary experiments with
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one of our case studies, we found that with 4-way coverage (the highest we could
generate in a reasonable time-frame), our covering arrays did not reliably catch
all of the bugs in our test system.

However, after some more experiments and head scratching, we discovered
an alternate approach that works quite well. The trick is to embrace the random
input generation that makes property-based testing so effective. In the remainder
of this section, we present an algorithm that uses combinatorial coverage to
“thin” a random generator, guiding it to more interesting inputs. Rather than
generate a fixed set of tests in the style of covering arrays, this approach produces
an unbounded stream of interesting test inputs. Then we discuss some concrete
details behind QuickCover, a Haskell implementation of our algorithm which we
use to obtain the experimental results in Section 6.

5.1 Online Generator Thinning

The core of our algorithm is the standard QuickCheck generate-and-test loop.
Given a test generator gen and a property p, QuickCheck generates inputs re-
peatedly until either (1) the property fails, or (2) a time limit is reached. (The
limit is chosen based on the user’s specific testing budget, and can vary signifi-
cantly in practice. In our experiments, we know a priori that a bug exists in the
program, so we forego the limit entirely and just run tests until the property
fails.)

QuickCheck(gen , p):

repeat LIMIT times:

# Generate 1 new input

x = gen()

# Check the property

if !p(x), return False

return True

Our algorithm modifies this basic one to use combinatorial coverage infor-
mation when choosing the next test to run.

QuickCover(strength , fanout , gen , p):

coverage = initCoverage ()

repeat LIMIT times:

# Generate fanout potential inputs

xs = listOf(gen(), fanout)

# Find the input with the best improved coverage

x = argmax[x in xs](

coverageImprovement(x, coverage , strength) )

# Check the property

if !p(x), return False

# Update the coverage information

coverage = updateCoverage(x, coverage , strength)

return True
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The key idea is that, instead of generating a single input at each iteration, we
generate several (controlled by the parameter fan-out) and select the one that
increases combinatorial coverage the most. We test the property on that input,
and (provided it succeeds) update the coverage information based on the test
we ran.

This algorithm is generic with respect to the representation for coverage in-
formation, but the particular choice of data structure and interpretation makes a
significant difference in both efficiency and effectiveness. In our implementation,
coverage information is represented by a multi-set of descriptions:

initCoverage ():

return emptyMultiset ()

coverageImprovement(x, coverage , strength ):

ds = descriptions(x, strength)

return sum([ 1 / (count(d, coverage) + 1)

for d in ds ])

updateCoverage(x, coverage , strength ):

return union(descriptions(x, strength), coverage)

At the beginning, the multi-set is empty; as testing progresses, each test
is evaluated based on coverageImprovement. If a description d had previously
been covered n times, it contributes 1

n+1 to the score. For example, if a test
input covers d1 and d2, where previously d1 was not covered and d2 was covered
3 times, the total score for the test input would be 1 + 0.25 = 1.25.

At first glance, one might have expected a simpler approach based on sets
instead of multi-sets. Indeed, this was the first thing we tried, but it turned out to
perform substantially worse than the multiset-based one in our experiments. The
reason is that just covering each description once turns out not to be sufficient
to find all bugs, and, once most descriptions have been covered, this approach
essentially degenerates to normal random testing. By contrast, the multi-set
representation continues to be useful over time; after each description has been
covered once, the algorithm begins to favor inputs that cover descriptions a
second time, then a third time, and so on. This allows QuickCover to generate
arbitrarily large test suites that continue to benefit from combinatorial coverage.

Keeping track of coverage information like this does create some overhead.
For each test that QuickCover considers (including those that are never run),
work needs to be done to analyze which descriptions the test covers and check
those against the current multi-set. This overhead means that QuickCover is
often slower than QuickCheck in terms of wall-clock time, even when it finds a
bug by running significantly fewer tests. In the next section, we argue that the
overhead of QuickCover can be amortized in the context of continuous integra-
tion, and the case studies in Section 6 suggest that this could yield substantial
benefits. Moreover, in Section 6.2 we show an instance where QuickCover is ac-
tually faster than QuickCheck in terms of wall-clock time to find bugs because
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the tests themselves take a long time to run. Appendix A describes finer details
around our Haskell implementation of QuickCover.

6 Evaluation

Since QuickCover adds some overhead to generating tests, we hypothesized that
it would be particularly well suited to situations where each test will be run
multiple times.

Of course, running the same test repeatedly on the same code is pointless: if it
were ever going to fail, it would do so on the first run (ignoring the thorny prob-
lem of flaky tests [20]). However, running the same test on successive versions
of the code is not only useful; it is standard practice in two common settings:
regression testing (checking that code continues to work after a change) and
especially continuous integration (where regression tests are run every time a
developer checks in a new version of the code). In these settings, the overhead
introduced by generating more tests than we actually run can be amortized,
since the same tests may be reused very many times. The cost of generating the
test suite is much less important than the cost of running it.

In order to validate this theory, we designed two experiments using Quick-
Cover. The primary goal of these experiments was to answer the question: Does
QuickCover actually reduce the number of tests needed to find bugs in a real
system? If this were the case, QuickCover would be useful for continuous inte-
gration settings where small, effective test suites are key. As a secondary goal,
we wanted to understand if the generator thinning overhead was always too high
to make QuickCover useful for real-time property-based testing, or if there were
any cases where using QuickCover would yield a wall-clock improvement even if
tests are only run once.

Both case studies answer our primary question in the affirmative: the first
case study, in particular, shows that QuickCover needs an average 10× fewer
tests to find bugs, compared to pure random testing. We choose an evaluator
for System F terms as our example because it allows us to test how QuickCover
behaves in a small but realistic scenario that requires a fairly complex random
testing setup. Our second case study replicates results from Pa lka et al. [25],
scaling up and applying QuickCover to find bugs in a production compiler, the
Glasgow Haskell Compiler (GHC) [22]. This setting gives us a useful look at our
second question, and shows that, in situations where tests themselves are slow
to run, QuickCover even reduces the wall-clock time needed to find bugs in real
time.

6.1 Case Study: Normalization Bugs in System F

Our first case study examines the effects of guiding a highly tuned and optimized
test generator for System F [11, 27] terms, using combinatorial coverage. The
generator component produces well-typed System F terms by construction (no
mean feat on its own) and is tuned to produce a highly varied distribution of
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different terms. Despite all the care put into the base generator, we found that
modifying the test distribution using QuickCover results in a test suite that finds
bugs with substantially fewer inputs.

Generating “interesting” programs (for finding compiler bugs, for example)
is an active research area. For instance, a generator for well-typed simply typed
lambda-terms has been used to reveal bugs in GHC [25, 5, 16], while gener-
ating C programs without “undefined behaviors” has been used to find many
bugs in production compilers [33, 26]. These cases are examples of differential
testing : different compilers (or different versions of the same compiler) are run
against each other on the same inputs to reveal discrepancies. Similarly, for this
case study we tested different evaluation strategies for System F, comparing the
behavior of various buggy versions to a reference implementation.

Recall the definition of System F from Section 4.2. Let y[x/n] stand for
substituting x for variable n in y, and x ↑n for lifting: incrementing the indices of
all variables above n in x. Then, for example, the standard rule for substituting
a type τ for variable n inside a type abstraction Λ. e requires lifting τ and
incrementing the de Bruijn index of the variable being substituted by one:

(Λ. e)[τ/n] = Λ. e[τ ↑0 /n+ 1]

Here are two ways to get this wrong: forget to lift the variables, or forget to
increment the index. Those bugs would lead to the following erroneous definitions
(the missing operation is shown in red):

(Λ. e)[τ/n] = Λ. e[τ ↑0 /n+ 1] and (Λ. e)[τ/n] = Λ. e[τ ↑0 /n + 1].

Using mistakes like these (specifically in the substitution and variable lifting
functions) as inspiration, we created 19 mutated versions of two different evalu-
ation relations. The mutations are explained in detail in Appendix B.

The two evaluation relations we implemented simplify terms in slightly dif-
ferent ways; the first implements standard big-step evaluation, and the second
uses a parallel evaluation relation to fully normalize terms. (We chose check both
evaluation orders, since some mutations, only actually cause a bug in one imple-
mentation or the other.) Since we were interested in bugs in either evaluation
order, we tested the property:

eval e == eval mutated e && peval e == peval mutated e

With a highly-tuned generator as our baseline, we used both QuickCheck and
QuickCover to generate a stream of test values for e and measured the average
number of tests required to find a bug (i.e., Mean-Tests-To-Failure, or MTTF)
for each approach.

Surprisingly, we found little to no difference in MTTF between 2-way, 3-way,
and 4-way testing, but changing the fan-out did make a large impact. Figure 1
shows both absolute MTTF for various choices of fan-out (log10 scale) and the
performance improvement as a ratio of un-thinned MTTF to thinned MTTF. All
choices of fan-out produced better MTTF results than the baseline, but higher
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Fig. 1. Top: System F MTTF, log10 scale, plotted in order of MTTF for un-thinned
random tests, t = 2.
Bottom: System F MTTF ratio of MTTF for un-thinned random tests to MTTF for
QuickCover, t = 2.

values of fan-out tended to be more effective on average. In our best experiment,
a fan-out of 30 found a bug in an average of 15× fewer tests than the baseline;
on average it was about 10× better. Figure 2 shows the total MTTF improve-
ment across 19 bugs, compared to the maximum theoretical improvement. If
our algorithm were able to perfectly pick the best test input every time, the
improvement would be proportional to the fan-out (i.e. it is impossible for our
algorithm be more than 10× better with a fan-out of 10). On the other hand, if
combinatorial coverage were irrelevant to test failure, then we would expect the
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Fig. 2. System F, proportional reduction in total number of tests needed to find all
bugs.

QuickCover test suites to have the same MTTF as QuickCheck. It is clear from
the figure that QuickCover is really quite effective: for small fan-outs, it is very
close to the theoretical optimum, and with a fan-out of 30 it achieves about 1

3
of the potential improvement—three QuickCover test cases are more likely to
provoke a bug than thirty QuickCheck ones.

6.2 Case Study: Strictness Analysis Bugs in GHC

To evaluate how our approach scales, and to answer whether QuickCover can be
used not only to reduce the number of tests required but also to speed up bug-
finding, we replicated the case study of Pa lka et al. [25], which found bugs in the
strictness analyzer of GHC 6.12 using a hand-crafted generator for well-typed
lambda terms; we replicated their experimental setup, but used QuickCover
to thin their generator and produce better tests. Two attributes of this case
study make it an excellent test of the capabilities of our combinatorial thinning
approach. First, it is a case study that found bugs in a real compiler by generating
random well typed lambda terms, and therefore we can evaluate whether the
reduction in number of tests observed in the System F case study scales to a
production setting. Second, running a test involves invoking the GHC compiler, a
heavyweight external process. As a result, reducing the number of tests required
to provoke a failure should (and does) lead to an observable improvement in
terms of wall-clock performance.

Concretely, Pa lka et al. [25] generate a list of functions that manipulate
lists of integers (with type [Int] -> [Int]) and compare the behavior of these
functions on partial lists (lists with undefined elements or tails) when compiled
with and without optimizations, another example of differential testing. They
uncover errors in the strictness analyzer component of GHC’s optimizer that
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introduce semantic inconsistencies where the non-optimized version correctly
fails with an error while the optimized version prints something to the screen
before failing:

Input −O0 Output −O2 Output

[undefined] Exception [Exception]

[1,undefined] Exception [1,Exception]

[1,2,undefined] Exception [1,2,Exception]

Finally, to balance the costly compiler invocation with the similarly costly
smart generation process, Pa lka et al. [25] group 1000 generated functions to-
gether in a single module to be compiled; this number was chosen to strike a
precise 50-50 balance between generation time and compilation/execution time
for each generated module. Since our thinning approach itself introduced ap-
proximately a 25% overhead in generation time, we increased the number of
tests per module to 1250 to maintain the same balance.

We ran our experiments in a Virtual Box running Ubuntu 12.04 (a version old
enough to allow for executing GHC 6.12.1), with 4GB RAM in a host machine
running i7-8700 @ 3.2GHz. We performed 100 runs of the original case study
and 100 runs of our variant that adds combinatorial thinning, using a fan-out
of 2 and a strength of 2. We found that our approach reduces the mean number
of tests required from 21268 ± 1349 to 14895 ± 1056 for a (42% reduction) and
also reduces the mean time to failure, from 193± 13 seconds to 149± 12, a 30%
improvement.

7 Related Work

The combinatorial testing literature is vast; a detailed survey can be found
in [24]. Here we discuss just the most closely related work, in particular, other
attempts to generalize combinatorial testing to structured and infinite domains.
We also discuss other approaches to property based testing with similar goals to
to ours, such as adaptive random testing and (branch) coverage-guided fuzzing.

7.1 Generalizations of Combinatorial Testing

There have already been some attempts to apply combinatorial testing to more
complex and even infinite types.

Salecker and Glesner [29] extend combinatorial testing to sets of terms gener-
ated by a context-free grammar. Their approach cleverly maps derivations up to
some length k to sets of parameter choices and then uses standard full-coverage
test suite generation algorithms to pick a subset of derivations to test. The main
limitation of this approach is the depth parameter k. By limiting the derivation
length, this approach only defines coverage over a finite subset of the input type.
By contrast, our definition of coverage is based on description size rather than
term size and provides more flexibility for “packing” multiple descriptions into
a single test.
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Another approach to combinatorial testing of context-free inputs is due to
Lämmel and Schulte [15]. Their system also uses a depth bound, but it provides
the user finer-grained control. At each node in the grammar, the user is free to
limit the coverage requirements and prune unnecessary tests. This is an elegant
solution for situations where the desired interactions are know a priori. Unfortu-
nately, this approach does not work well for the range of types we are interested
in, and it requires a fair amount of manual input.

Finally, Kuhn et al. [12] present a notion of sequence covering arrays to de-
scribe combinatorial coverage of sequences of events. We believe that t-way se-
quence covering arrays in their system are equivalent to (2t−1)-way full-coverage
test suites of the appropriate list type in ours. They also have a reasonably effi-
cient algorithm for generating covering arrays in this specialized case.

Our idea to use regular tree expressions for coverage is partly inspired by
Usaola et al. [32] and Mariani et al. [21]. These works focus on covering regular
expressions themselves, rather than using regular expressions to cover ADTs,
but they do explore the idea of combinatorial coverage in the world of formal
languages.

In Appendix A we discuss some details around our implementation of Quick-
Cover in Haskell. The idea of applying regular tree expressions to Haskell terms
has also been addressed by Serrano and Hage [31], who developed a library called
t-regex for matching Haskell terms with regular tree expressions.

7.2 Similar Approaches in Property-Based Testing

There are also several existing systems that attempt to improve on standard
property-based testing by changing the way inputs are selected.

The SmallCheck [28] library generates test suites that contain all “small”
test cases, which means that they are likely to have high combinatorial coverage
for some small t. In contrast, QuickCover provides higher-strength combinatorial
coverage without worrying about the size of each individual test. There are pros
and cons for each approach: QuickCover guides generation to combinatorially in-
teresting tests, but it might miss some small test cases; SmallCheck is extremely
thorough with its coverage of small tests, but it requires a large volume of tests
to be effective.

Coverage guided fuzzing tools like AFL [18] use a similar approach to ours,
but they use code coverage (rather than combinatorial coverage) as a feedback
mechanism for finding more interesting tests. There has already been successful
work bringing these methods to functional programming [17, 10], but it is still
far from perfect. One major downside is that measuring code coverage requires
a grey-box approach and must be done on-line. Combinatorial coverage, on the
other hand, can be computed without knowledge of the code itself, and therefore
provides a black-box alternative (which is valuable when the same test suite is
to be used for many versions of the code).

Chen et al.’s adaptive random testing (ART) [3] uses an algorithm that is
related to the one we use in QuickCover, in that they generate a set of random
tests and select the most interesting to run. Rather than using combinatorial
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coverage, ART requires a distance metric on test cases—at each step, the can-
didate which is farthest from the already-run tests is selected. Chen et al. show
that this approach finds bugs after fewer tests on average, in the programs they
study. ART was first proposed for programs with numerical inputs, but Ciupa
et al. [4] showed how to define a suitable metric on objects in an object-oriented
language and used it to obtain a reduction of up to two orders of magnitude in
the number of tests needed to find a bug. Like combinatorial testing, ART is a
black-box approach that depends only on the test cases themselves, not on the
code under test. However, Arcuri and Briand [1] question its value in practice,
because of the (quadratic) number of distance computations it requires, from
each new test to every previously executed test; in a large empirical study, they
found that the cost of these computations made ART uncompetitive with or-
dinary random testing. While our approach also has significant computational
overhead, the time and space complexities grow with the number of possible
descriptions (derived from the data type definition and the choice of strength)
and not with the total number of tests run; this means that testing will not
slow down significantly over time. In addition, our approach works in situations
where a distance metric between inputs does not make sense.

8 Conclusion and Future Work

In sum, this paper presents a generalized definition of combinatorial coverage and
an effective way to use that definition for property-based testing. We expand the
definition of combinatorial coverage to work in the realm of algebraic data types
with the help of regular tree expressions. Our sparse test descriptions provide
a robust way to look at combinatorial testing, which specializes to the classical
approach. We use these sparse descriptions as a basis for QuickCover—a tool that
thins a random generator with a bias towards increased combinatorial coverage.
In two case studies, we show that QuickCover is useful in practice: it finds bugs
using an average of 10× fewer tests.

Moving forward, we see a number of potential directions for further research.

8.1 Variations

Sparse test descriptions are a great way to define combinatorial coverage for
algebraic data types, but not as the only way. Here we discuss some variations
on our approach and why they might be interesting to explore.

Representative Samples of Large Types Perhaps it is possible to do combinatorial
testing with ADTs by having humans decide exactly which trees to cover. This
approach is already widely used in combinatorial testing to deal with types like
integers, which (though their machine representations are technically finite) are
much too large for testing to efficiently cover all “constructors.” For example, if
the tester knows (by reading the code, or because they wrote it) that the code
has an if-statement examining x < 5, they might choose to cover

x ∈ {−2147483648, 0, 4, 5, 6, 2147483647}.



20 Goldstein, et al.

The tester covers values around 5 because those are important to the specific use
case and boundary values and 0 to check for common edge-cases. Concretely, this
practice means that instead of trying to cover tuple3(Int, true+false, true+false),
the tester covers the specification

tuple3(−2147483648 + 0 + 4 + 5 + 6 + 2147483647, true + false, true + false).

In our setting, this practice might mean choosing a representative set of
constructor trees to cover, and then treating them like a finite set. In much the
same way as with integers, rather than cover

tuple3(τlist(bool), true + false, true + false),

we could treat a selection of lists as atomic constructors, and cover the specifi-
cation

tuple3( [] + [true, false] + [false, false, false] , true + false, true + false)

which has 2-way descriptions like

tuple3( [] , >, false) and tuple3( [true, false] , true, >).

Just as testers choose representative sets of integers, testers could choose sets of
trees that they think are interesting and only cover those trees. Of course, the
set of all trees for a type is usually much larger and more complex than the set
of integers, so this approach is likely not practical. Still, it is possible that small
amounts of human intervention could be beneficial to the process of determining
the right descriptions to cover.

Type-Tagged Constructors Another variation to our approach changes the way
that ADTs are translated into constructor trees. In Appendix A we show a sim-
ple example of a Translation for lists of Booleans, but an interesting problem
arises if we consider lists of lists of Booleans. The most basic approach would be
to use the same constructors (LCNil and LCCons) for both “levels” of list. For
example, [[True]] would become (with a small abuse of notation)

LCCons (LCCons LCTrue LCNil) LCNil.

Depending on the application, it might actually make more sense to have dif-
ferent constructors for the different list types ([Bool] vs. [[Bool]]). [[True]]
could instead be translated as

LCOuterCons (LCInnerCons LCTrue LCInnerNil) LCInnerNil

(with a slight abuse of notation), allowing for a broader range of potential test
descriptions. Both of these are valid translations, in the sense that both define
a set of constructor trees that mimic the structure of lists of lists of Booleans.

This observation can be generalized to any polymorphic ADT—any time a
single constructor is used at multiple types, it is likely beneficial to differentiate
between the two. With this in mind, we might explore type-tagged constructors
and trees, where any use of a constructor would be tagged with the monomor-
phized type that it belongs to.
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Eventual Descriptions A third potential variation is a modification to make test
descriptions a bit less sparse. Recall that sparse test descriptions are defined as

d , > | �C(d1, . . . , dn).

What if we chose this instead?

d , �d′

d′ , C(d′1, . . . , d
′
n)

In the former case, every relationship is “eventual”: there is never a requirement
that a particular constructor appear directly beneath another. In the latter case,
the descriptions enforce a direct parent-child relationship, and we simply allow
the expression to match anywhere in the term. We might call this class “eventual”
test descriptions.

We chose sparse descriptions because putting eventually before every con-
structor leaves more opportunities for different descriptions to be “interleaved”
within a term. This leads to smaller test suites, in general. We ran some small ex-
periments and found that this alternative proposal seemed to perform similarly
across the board but worse in a few cases. Still, we think that experimenting with
the use of eventually in descriptions may lead to interesting new opportunities.

8.2 Combinatorial Coverage of More Types

Our sparse tree description definition of combinatorial coverage is focused on
inductive algebraic types. While these encompass a wide range of the types
that functional programmers use, it is far from everything. The most promising
next step is an extension of descriptions that generalizes to co-inductive types.
We actually think that the current definition might almost suffice—regular tree
expressions can denote infinite structures, so this generalization would likely only
affect our algorithms and the implementation of QuickCover. We also should be
able to include GADTs without too much hassle. Our biggest open question is
function types: these seem to require something more powerful than regular tree
expressions to describe, and it is not clear that combinatorial testing even makes
sense for inputs that are functions.

8.3 Regular Tree Expressions for Directed Generation

As we have shown, regular tree expressions are a powerful language for pick-
ing out subsets of types. In this paper, we mostly focused on automatically
generating small descriptions, but it might be possible to apply this idea more
broadly for specifying sets of tests. One straightforward extension would be to
use the same machinery that we use for QuickCover, but, instead of covering
an automatically generated set of descriptions, the generator might ensure that
some manual set of expressions is covered. For example, we could use a modified
version of our algorithm to generate a test set where

nil, cons(>, nil), and µX. cons(true, X) + nil
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are all covered. (Concretely, that would be a test suite containing, at a minimum,
the empty list, a singleton list, and a list containing only true.) This might be
useful for cases where the testers know a priori that certain cases are important
to test, but they still want to focus on random testing primarily.

A different approach would be to create a tool that synthesizes QuickCheck
generators that only generate terms matching a particular regular tree expres-
sion. This idea, related to work on adapting branching processes to control test
distributions [23], would make it easy to write highly customized generators that
have meticulous control over the resulting test suites.
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A QuickCover in Detail

Our evaluation is based on a concrete implementation of the previously men-
tioned algorithm called QuickCover. The tool is written in Haskell and relies
heavily on machinery already provided by QuickCheck. The easiest way to use
QuickCover is via the function

quickCover ::

Translation a t -> Strength -> (a -> Bool) -> IO ().

For comparison, the vanilla quickCheck function is roughly of type

quickCheck :: Gen a -> (a -> Bool) -> IO ().

Given a translation (defined below) and a strength, this can be used in the
same way as the standard quickCheck function. The difference is that instead
of running the property with every generated input, QuickCover implements the
algorithm from Section 5.1, generating a few tests at a time and only running
the one which improves t-way combinatorial coverage the best.

The translation has three fields; each field can be tuned, allowing the user to
adjust the way that coverage is computed.

data Translation a t = Translation

{ haskTy :: TypeRepr t

, toTermRepr :: a -> TermRepr t

, gen :: Gen a

}

The haskTy and toTermRepr fields define an explicit structure that mirrors
the data type declarations of the input type. The haskTy field can be thought
of as one of the specifications that are shown throughout the paper, although
using a syntax closer to Haskell’s type declarations for convenience, and the
toTermRepr field is a translation from the actual Haskell terms to simple trees
of constructors. The gen field is a QuickCheck generator for Haskell terms of the
input type. Often it is possible to let QuickCheck automatically derive generators
for a type, but users can supply their own generators if they want. This feature
is important because many testing applications rely on custom generators that
respect certain invariants.

Figure 3 shows an example of a translation for a property of type
[Bool] -> Bool. In the example haskTy defines the two types we care about
(lists and Booleans), the toTermRepr function recursively turns a real list of
Booleans into a constructor tree of type TermRepr LC, and the generator comes
from QuickCheck’s Arbitrary type class.

The current QuickCover prototype does not generate these translations au-
tomatically; we expect it is not too hard to do so using one of Haskell’s many
reflection mechanisms. However, there is often some freedom in exactly how to
define a translation. For example, it can sometimes be useful to treat some sub-
trees as opaque for the purposes of coverage. In our System F case study, (see
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-- | The type of Boolean list constructors

data LC = LCNil | LCCons | LCTrue | LCFalse

deriving (Eq, Ord)

-- | A mapping from concrete lists to a generic repr.

listToTermRepr :: [Bool] -> TermRepr LC

listToTermRepr [] = CNode LCNil []

listToTermRepr (True : xs) =

CNode LCCons [ CNode LCTrue []

, listToTermRepr xs

]

listToTermRepr (False : xs) =

CNode LCCons [ CNode LCFalse []

, listToTermRepr xs

]

-- | All info. needed to test Boolean lists

listBoolTranslation :: Translation [Bool] LC

listBoolTranslation = Translation

{ haskTy = Map.fromList

[ ("List", [(LCCons , ["Bool", "List"]), (LCNil , [])])

, ("Bool", [(LCTrue , []), (LCFalse , [])])

]

, toTermRepr = listToTermRepr

, gen = arbitrary

}

Fig. 3. An example of a translation for a property of type [Bool] -> Bool. At least
for me right now, there is too little blank space under this caption.

Section 6.1) we choose to make the de Bruijn indices used to represent variables
opaque: instead of writing the variable constructor as (LCVar, ["Int"]), we
simply wrote (LCVar, []) and defined our toTermRepr function to map vari-
ables accordingly. When computing coverage, our algorithm treats all variables
(Var 0, Var 1, etc) as the same constructor in the tree, cutting down on the
number of descriptions that need to be covered, potentially in exchange for some
testing effectiveness.
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B Case Study 1: Glossary of Bugs

Bug Description
SubstSwapped Reverses the substitution direction when evaluating an application.
SubstNoIncr Fails to increment variables during substitution.
AppForgetSubst Fails to substitute terms when evaluating an application.
SubstLT Flips a > check to < during substitution.
SubstInTypeLT Flips a > check to < during type-level (forall) substitution.
SubstInTypeNoIncr Fails to increment variables during type-level (forall) substitution.
TSubstNoIncr Fails to increment variables during type substitution.
TAppForgetSubst Fails to substitute types when evaluating an application.
SubstVar Incorrectly substitutes variables (erroneous decrement).
LiftVar Incorrectly lifts variables during substitution.
LiftLam Fails to lift lambdas during substitution.
LiftTypeForAll Incorrectly lifts variables during type-level (forall) substitution.
LiftTypeTVar Fails to lift variables during type substitution.
LiftTNoIncr Fails to lift lambdas during type substitution.
SubstInTypeNoDecr Fails to decrement an index during type-level substitution.
SubstNoLift Fails to lift variables during substitution.
LiftTLamA Variation A on incorrect type variable lifting.
LiftTLamB Variation B on incorrect type variable lifting.
LiftTApp Incorrectly lift during type application.
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C Case Study 1: Translation for System F Terms

Note that the constructors for both Var and TVar are opaque—we do not model
the variable indices.

data SFC = ...

typeT :: Translation Type SFC

typeT =

Translation

{ haskTy =

Map.fromList

[ ( "Type",

[ (SFBase , []),

(SFTBool , []),

(SFFunc , ["Type", "Type"]),

(SFTVar , []),

(SFForAll , ["Type"])

]

)

],

toTermRepr = ...,

gen = ...

}

exprT :: Translation Expr SFC

exprT =

Translation

{ haskTy =

Map.fromList

[ ( "Expr",

[ (SFCon , []),

(SFVar , []),

(SFLam , ["Type", "Expr"]),

(SFApp , ["Expr", "Expr"]),

(SFCond , ["Expr", "Expr", "Expr"]),

(SFBTrue , []),

(SFBFalse , []),

(SFTLam , ["Expr"]),

(SFTApp , ["Expr", "Type"])

]

)

]

‘Map.union ‘ haskTy typeT ,

toTermRepr = ...,

gen = ...

}


