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Most existing quantum programming languages are based on the quantum circuit model of computation,

as higher-level abstractions are particularly challenging to implement—especially ones relating to quantum

control flow. The Qunity language, proposed by Voichick et al., offered such an abstraction in the form of

a quantum control construct, with great care taken to ensure that the resulting language is still realizable.

However, Qunity lacked a working implementation, and the originally proposed compilation procedure was

very inefficient, with even simple quantum algorithms compiling to unreasonably large circuits.

In this work, we focus on the efficient compilation of high-level quantum control flow constructs, using

Qunity as our starting point. We introduce a wider range of abstractions on top of Qunity’s core language that

offer compelling trade-offs compared to its existing control construct. We create a complete implementation of

a Qunity compiler, which converts high-level Qunity code into the quantum assembly language OpenQASM 3.

We develop optimization techniques for multiple stages of the Qunity compilation procedure, including both

low-level circuit optimizations as well as methods that consider the high-level structure of a Qunity program,

greatly reducing the number of qubits and gates used by the compiler.

CCS Concepts: • Software and its engineering→ Syntax; Semantics;Compilers; Interpreters; Preprocessors;
Functional languages; Data types and structures; Control structures; Procedures, functions and subroutines;
Patterns; Domain specific languages; • Theory of computation→ Quantum computation theory; Control
primitives; Denotational semantics.

Additional Key Words and Phrases: quantum programming languages, high-level programming languages,

quantum control flow, quantum subroutines, compiler optimizations

1 Introduction
In recent years, many high-level quantum programming languages have been proposed, aiming to

allow algorithm implementers to work at a higher level of abstraction compared to the quantum

circuit model of computation. Languages such as QML [1], Silq [3], Tower [37], and Qunity [31]

walk a fine line between providing constructs familiar from classical computing and being realizable

in quantum hardware. High-level quantum control flow constructs are particularly challenging

since quantum programs must be compilable to fixed-length quantum circuits generated by classical

computation [38]. As a result, proposed high-level quantum languages offer branching statements

with significant restrictions on the expressive powers of their individual branches.

Among these languages, Qunity stands out for its unique handling of control flow that emphasizes

compositionality. Qunity naturally extends classical programming constructs into the domain of

quantum computation and admits a compositional denotational semantics defined in terms of

quantum operators (acting on state vectors) and superoperators (acting on density matrices),

allowing for more flexible design than what is possible with unitary gate-based quantum circuits.
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Qunity’s ctrl construct offers a generalization of pattern matching that can coherently control

on the output of an arbitrary (possibly irreversible) quantum or classical computation, relying on

the BQP subroutine theorem [33]. The construct matches the scrutinee against a set of reversible

classical patterns and outputs a superposition of the corresponding outcomes, provided that certain

conditions (like the orthogonality of the patterns and the consistent erasure of quantum variables)

hold. Consider, for example, Deutsch’s algorithm [8] as written in abstract Qunity syntax:

deutsch(𝑓 ) .
.=

let 𝑥 =Bit (had 0) in(
ctrl (𝑓 𝑥)

{
0 ↦→ 𝑥

1 ↦→ 𝑥 ⊲ gphase
Bit
(𝜋)

}
Bit Bit

)
⊲ had

Given an arbitrary quantum oracle 𝑓 that takes in and outputs a single qubit, deutsch will test

whether 𝑓 is constant or not using only a single evaluation (rather than two as in classical com-

puting). Unlike in other quantum programming languages, Qunity’s quantum control flow allows

the programmer to write subroutines in a style similar to classical programming, without having

to explicitly translate irreversible programs into unitary circuit forms. For instance, to input the

constant-one oracle into the above example of Deutsch’s algorithm, the programmer can just use

𝜆𝑥
Bit↦−−→ 1 instead of constructing a reversible map of the form 𝑈𝑓 |𝑥,𝑦⟩ = |𝑥,𝑦 ⊕ 𝑓 (𝑥)⟩ = |𝑥,𝑦 ⊕ 1⟩

as is typical in circuit-style programming. However, Qunity’s type system places several constraints

on the expressions in the ctrl block to ensure its realizability: specifically, the right-hand-side

patterns must erase the quantum variables in the scrutinee expression in a consistent way so that

the compiler can perform automatic uncomputation.

To address these limitations, we introduce two new pattern matching constructs to Qunity,

which trade off the subroutine capabilities of ctrl for greater flexibility in designing pure and

mixed quantum computations. The new match construct corresponds to classical or mixed pattern

matching and has minimal restrictions, allowing the programmer to easily write classical logic

(which may then become a quantum subroutine). By contrast, pmatch (or pure match) allows

for symmetric pattern matching between orthogonal sets of pure expressions, similarly to Sabry

et al. [25]. This allows us to easily express reversible quantum programs without the erasure

restrictions of ctrl and simultaneously aids in compiling Qunity code to efficient circuits.

Compiling Qunity is a key contribution of this work. Qunity’s high degree of abstraction from

the quantum circuit model of computation makes compilation particularly challenging. In addition

to control flow and pattern matching, Qunity also generalizes the notion of error handling through

try/catch statements (which can be viewed as projective measurements) and provides support for

quantum sum types (whose semantics corresponds to direct sums of Hilbert spaces). To represent

these abstractions, the compiler must encode Qunity types and contexts into quantum registers

and allocate ancillary qubits to express Qunity’s non-unitary semantics in terms of unitary gates, a

process which can lead to significant inefficiencies. While Voichick et al. describe an algorithm for

converting Qunity into low-level qubit circuits, this procedure is more of a proof-of-realizability

than a practical compiler: even simple quantum algorithms tend to be compiled into prohibitively

large circuits. In this work, we develop a practical Qunity compiler, incorporating optimizations at

various stages of the compilation process that significantly reduce the number of qubits and gates

used in the final compiled circuits.

We begin by providing technical background on Qunity (Section 2), followed by a series of

examples to introduce the intricacies of the language. Then, we make the following contributions:
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• We develop the first implementation of the Qunity language. We add a surface syntax to

the core Qunity language, allowing the user to define parameterized types and subroutines

that may involve recursion and higher-order operations (Section 3).

• We introduce new pattern-matching constructs into the core Qunity language, to avoid

the restrictions imposed by the quantum control construct and improve the language’s

expressiveness (Section 4).

• We implement the first working Qunity compiler that converts high-level Qunity code into

low-level quantum circuits in OpenQASM 3, as well as a Qunity interpreter (Section 5).

• We design optimizations for the compilation procedure to reduce the number of qubits and

gates used in the final compiled circuit, acting at several stages of the compilation process

(Section 6 and Section 7).

2 Qunity’s Goals, Syntax, and Typing
In this section, we discuss the central ideas and motivations behind the construction of Qunity’s

type system and semantics, and we will introduce our new surface syntax.

2.1 Unified Programming inQunity
Qunity’s primary goal is a unified treatment of quantum and classical computation. Traditional

models such as Knill’s quantum random access machine (QRAM) [17] and dynamic circuits [6]

have a classical computer constructing and running quantum circuits, using the measurement

results in classical control flow to determine what circuits to run next. This reflects the paradigm of

“quantum data, classical control” [26], creating a clear separation between classical and quantum

components of an algorithm.

On the other hand, Qunity aims to blur the line between “classical” and “quantum” as much as

possible, introducing quantum language constructs that generalize classical ones while empha-

sizing compositionality. While Qunity still allows, in principle, to compile Qunity programs to

dynamic circuits, it is not tailored for quantum algorithms that rely heavily on classical computation

(e.g. ones that require floating point manipulation such as variational hybrid quantum-classical

algorithms [21] and quantum machine learning [32]). Instead, Qunity is designed to support the

implementation of complex quantum algorithms that operate on a level of abstraction above the

circuit model, require manipulating complex data structures in quantum superposition, or use

irreversible programs as subroutines in a reversible quantum computation.

2.2 Surface Syntax
Qunity’s core language does not support higher-order functions and recursion, due to theoretical

limitations on ways in which these ideas can be generalized to the quantum setting [38]. Fur-

thermore, Qunity’s core syntax does not allow subroutines to be named and called in a program

multiple times. For these reasons, we augment Qunity with a surface syntax which provides a layer

of metaprogramming on top of the core Qunity language. This system allows the user to create

parameterized types, expressions, programs, and real number expressions that get evaluated at

compile time during the preprocessing stage. User-defined types can be written as variants with

named constructors, which are evaluated into the core language’s left and right injections during

the preprocessing stage. The full grammar of the surface syntax, as used in Qunity source files, can

be found in Appendix B.

For concreteness, let us revisit the Deutsch example from the introduction and present it in terms

of the new surface syntax:
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def $deutsch{@f : Bit → Bit} : Bit :=

let x = $plus in

ctrl @f(x) [

$0 → x;

$1 → x ▷ gphase{pi}

]

▷ @had

end

In this syntax, the symbols $, @, and # are used as sigils to write names for Qunity expressions,

programs, and numbers, respectively. Qunity types have names starting with a capital letter, and

quantum variables (which are part of the core syntax and remain after the preprocessing stage) start

with a lowercase letter or underscore. The syntax ▷ is a shorthand for function application: x ▷ @f
is equivalent to @f(x). Additionally, let x = y in z is syntactic sugar for (lambda x → z)(y).
Global phase (gphase) can be defined as syntactic sugar over the primitive rphase (relative phase),

with gphase{r} equivalent to rphase{_, r, r}.
The type Bit is our first example of a user-defined datatype, which is provided by the Qunity

standard library:

type Bit := $0 | $1 end

Here, Bit is defined as a variant type with two constructors that do not take any arguments. When

the preprocessor evaluates this into the base Qunity syntax, it converts the variant types into sum

types and the constructors into left and right injections. So, $0 becomes leftUnit⊕Unit(), and $1
becomes rightUnit⊕Unit(). We can also define @had and $plus to represent the Hadamard gate

and the |+⟩ state:
def @had : Bit → Bit := u3{pi/2, 0, pi} end

def $plus : Bit := @had($0) end

where u3 is a Qunity primitive for general single-qubit gates with the type Unit ⊕ Unit ⇝
Unit ⊕ Unit in the core Qunity language.

2.3 Typing and Semantics
Qunity has two distinct typing judgments for expressions: pure expression typing and mixed

expression typing. These correspond to two distinct but interrelated semantics: a pure semantics

that is defined in terms of norm non-increasing operators acting on state vectors and a mixed

semantics that is defined in terms of trace non-increasing superoperators acting on density matrices.

We write Γ ∥ Δ ⊢ 𝑒 : 𝑇 to indicate that expression 𝑒 has pure type 𝑇 with respect to classical

context Γ and quantum context Δ. Similarly, we write Γ ∥Δ ⊩ 𝑒 : 𝑇 (using⊩ instead of ⊢) to indicate
that 𝑒 has mixed type 𝑇 . The classical contexts here are not to be viewed as literally containing

classical variables—a variable being in the classical context indicates that it can only be accessed by

copying it in the classical basis, and, unlike quantum variables, its relevance is not enforced by the

type system. Appendix A.2 contains a more detailed discussion of the role of these contexts.

We write ⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′
to indicate that the program 𝑓 is typed as a coherent map from 𝑇 to 𝑇 ′

,

and we write ⊢ 𝑓 : 𝑇 ⇛ 𝑇 ′
to indicate that 𝑓 is typed as a quantum channel. Coherent maps have

operator semantics, acting on pure states, while quantum channels act on density matrices.

The semantics of a pure expression corresponds to a linear map J𝜎 : Γ ∥ Δ ⊢ 𝑒 : 𝑇 K ∈
L(H (Δ),H(𝑇 )), sending quantum states in the Hilbert space H(Δ) associated with the quantum

context Δ to states in the space H(𝑇 ) associated with the type 𝑇 (see Appendix A.3 for definitions
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of these Hilbert spaces). Similarly, J⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′K ∈ L(H (𝑇 ),H(𝑇 ′)) sends states from the space

H(𝑇 ) to H(𝑇 ′). Pure expressions and coherent maps are used to represent reversible quantum

computation, which does not discard quantum information and has a well-defined adjoint. Note

that “reversible” does not necessarily mean “invertible” and the adjoint of an operator representing

the semantics of a pure expression or coherent map does not need to be its inverse. Thus, unlike in

the quantum circuit model and languages such as SPM [25], these linear maps do not necessarily

need to be unitary. Instead, they are restricted to the much broader class of contractions (norm

non-increasing operators), which includes projectors and non-unitary isometries. Consider, for

example, the expression lambda $0 → $0, which has the operator semantics of a projector:

|0⟩ ⟨0| =
[
1 0

0 0

]
.

Using $0 as a pattern in the lambda effectively creates an assertion that the input is the |0⟩ state. If
$1 is given as input, the result is 0 (the zero vector), signifying an “error state” or an “exception”

being thrown and if $plus (whose semantics is |+⟩ = 1√
2

( |0⟩ + |1⟩)) is given as input, the result is

1√
2

|0⟩, which can be viewed as a quantum superposition of the assertion succeeding and failing.

Despite the freedom gained by not restricting pure semantics to unitaries, Qunity’s type system

ensures that pure expressions and programs never discard quantum information, placing relevance

constraints on variables in quantum contexts. However, sometimes maintaining reversibility is

unnecessary and requires a large amount of tedious bookkeeping. For instance, if a programmer

wishes to implement an AND gate reversibly, they would need to implement a 3-bit operation such

as (𝑎, 𝑏, 𝑐) ↦→ (𝑎, 𝑏, (𝑎 ∧ 𝑏) ⊕ 𝑐), corresponding to the Toffoli gate. Keeping track of this extra data

can be inconvenient and unnecessary. Mixed typing and semantics allow the Qunity programmer to

create decoherence by irreversibly discarding quantum information when necessary. The semantics

of mixed expressions and quantum channels is described by trace non-increasing superoperators

acting on the space of density matrices. In quantum mechanics, density matrices describe the

state of an open quantum system that has interacted with its environment. Quantum algorithm

designers often work with both the state vector and density matrix formalisms, and the design of

the Qunity language allows both to be implemented in a convenient way. Consider, for example,

the Qunity program lambda x → (x, x) ▷ lambda (x, y) → x. Here, lambda x → (x, x)
implements the isometry |0, 0⟩ ⟨0| + |1, 1⟩ ⟨1|,1 while lambda (x, y) → x cannot be typed as a

coherent map since it introduces decoherence by discarding the variable 𝑦. Taken as a whole,

the program shares x along the classical basis and discards the new copy of it, which effectively

performs a measurement. If the pure state |+⟩ is input into this program, it transforms into the

maximally mixed state
1

2
( |0⟩ ⟨0| + |1⟩ ⟨1|), which is a probabilistic mixture (rather than a quantum

superposition) of |0⟩ and |1⟩.
Finally, Qunity’s try/catch construct can be viewed as performing a measurement to determine

whether an exception has occurred and performing another computation if it has. This can convert a

norm-decreasing operator into a trace-preserving superoperator. For example, the Qunity expression

try $plus ▷ lambda $0 → $0 catch $plus corresponds to the density matrix

1

2

|0⟩ ⟨0| + 1

2

|+⟩ ⟨+| =
[
3/4 1/4
1/4 1/4

]
.

A density matrix can always be viewed as a partial trace of a pure state on a larger system, and a

quantum channel can always be represented as the application of an isometry followed by a partial

trace using the Stinespring dilation [14].

1
Note that Qunity allows variables to be reused: This does not violate the no-cloning theorem [34], since this corresponds

to sharing a state along the classical basis (an operation that creates entanglement) rather than cloning it.
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The design of Qunity’s type system and semantics thus allows for a rich interplay between pure

and mixed programming, allowing concepts prominent in quantum algorithm analysis to be easily

extended into the realm of quantum algorithm implementation.

3 Qunity by Example
In this section, we demonstrate several examples of quantum algorithms implemented in Qunity.

These examples showcase the power of Qunity’s compositional quantum control flow constructs:

ctrl, as well as the new pmatch and match constructs that we introduce to overcome some of the

limitations of ctrl. Section 4 will discuss these in more technical detail.

3.1 Order Finding
The following example is a simplified demonstration of the order finding algorithm, which is the

quantum part of Shor’s algorithm for integer factorization [27]. Given relatively prime integers

𝑁 and 𝑎 < 𝑁 , the goal is to find an integer 𝑟 such that 𝑎𝑟 ≡ 1 (mod 𝑁 ). For the purposes of this
demonstration, we will assume that 𝑁 is a power of two – the resulting program is not useful for

Shor’s algorithm (as it assumes 𝑁 is odd and orders modulo 2
𝑛
are easy to calculate classically [16]),

but it is simpler to implement and illustrative of Qunity’s features.

In our surface language, we can define a datatype of arrays of a given length, and then represent

numbers Num{#n} in little-endian form using this datatype:

type Array{#n , ’a} := if #n <= 0 then Unit

else ’a * Array{#n - 1, ’a} endif end

type Num{#n} := Array{#n , Bit} end

Using this representation, we can write the following code to add a fixed number #a to a quantum

#n-bit number (overflowing so that the addition is modulo 2
#n

) in a reversible way:

def @add_const{#n , #a} : Num{#n} → Num{#n} :=

if #n <= 0 then

@id{Unit}

else

pmatch [

($0 , x) → (if #a % 2 = 0 then $0 else $1 endif ,

x ▷ @add_const{#n - 1, (#a -#a %2) /2});

($1 , x) → (if #a % 2 = 0 then $1 else $0 endif ,

x ▷ @add_const{#n - 1, (#a -#a %2)/2 + #a %2})

]

endif

end

This showcases the use of the newly added pmatch construct. This form of pattern matching, which

has pure program semantics, allows us to reversibly transform between two orthogonal sets of

Qunity expressions. The type system imposes orthogonality requirements (Appendix F) on both

sides of the pattern-matching block in pmatch, while ctrl only imposes them on the left-hand side

patterns. However, since pmatch does not need to perform automatic uncomputation, it avoids the

erasure judgment (Appendix H) required by ctrl, so the use of variables on the right-hand side of

the pattern matching block is much less restricted in this respect. It would be difficult to define this

operation using only the ctrl construct.
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For this example, @add_const is defined recursively, using versions of itself with #n - 1 and
different values of #a depending on whether there is a carry bit. It is clear that @add_const{0,
#a} has unitary semantics since it is the identity map. Now, for any integer #n, assuming that

@add_const{#n - 1, #a} is unitary, the typechecker will correctly type the pmatch statement and

conclude that @add_const{#n, #a} is also unitary because the two sets of orthogonal expressions

span their respective spaces. This ensures that the orthogonality requirements are satisfied.

We can now use constant addition to define modular multiplication by an odd constant #a

modulo 2
#n

, using the approach in Gidney [10]:

def @mod_mult{#n , #a} : Num{#n} → Num{#n} :=

if #n = 1 then

@id{Num{#n }}

else

lambda (x0, x1) →
let (x0, x1) = (x0, x1 ▷ @mod_mult{#n - 1, #a }) in

ctrl x0 [

$0 → (x0, x1);

$1 → (x0, @add_const{#n - 1, (#a - 1) / 2}(x1))

]

endif

end

This procedure works because if 𝑎 is odd, then

(1 + 2𝑥)𝑎 ≡ 1 + 2𝑥𝑎 + 𝑎 − 1 ≡ 1 + 2

(
𝑥𝑎 + 𝑎 − 1

2

)
where all addition is modulo 2

𝑛
. Now, we can define a modular exponentiation program that

implements the operation |𝑥,𝑦⟩ ↦→ |𝑥,𝑦 · 𝑎𝑥 ⟩, where we use ctrl to coherently condition on the

bits of 𝑥 and apply a modular multiplication by the current power of #a (note that now we cannot

use pmatch since the RHS is not necessarily orthogonal):

def @mod_exp{#m , #n , #a} : Num{#m }*Num{#n} → Num{#m }*Num{#n} :=

if #m = 0 then @id{Num{#m} * Num{#n }}

else

lambda ((x0, x1), y) → let ((x0, x1), y) = ctrl x0 [

$0 → ((x0, x1), y);

$1 → ((x0, x1), @mod_mult{#n , #a }(y)) ]

in let (x0, (x1, y)) =

(x0, @mod_exp{#m - 1, #n , #a * #a }(x1, y))

in ((x0, x1), y)

endif

end
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With all the above machinery in place, we can finally define the main order finding procedure:

def $order_finding{#n , #a} : Num{#n} :=

($repeated{#n , Bit , $plus}, $num_to_state{#n , 1})

▷ @mod_exp{#n , #n , #a}

▷ @fst{Num{#n}, Num{#n }}

▷ @adjoint{Num{#n}, Num{#n}, @qft{#n }}

▷ @reverse{#n , Bit}

end

The order finding procedure starts with a uniform superposition of the values of 𝑥 and 𝑦 = 1,

applies themodular exponentiation, then discards the second register (@fst is defined as just lambda
(x, y) → x) and applies the inverse quantum Fourier transform (see Appendix D.2 for the imple-

mentation), reversing the result to display it in big-endian. Measuring the output will result in a ran-

dom number of the form 𝑁 𝑗/𝑟 for some integer 𝑗 . For instance, running $order_finding{5, 13}
would output random multiples of 4, since the order of 13 modulo 2

5
is 8 and 2

5/8 = 4. The

procedure relies on the reversibility of the operations and the pure typing judgment to maintain

quantum coherence before applying the inverse quantum Fourier transform.

3.2 Grover’s Algorithm
An interesting example of the use of ctrl is Grover’s search algorithm [12]: Given any quantum

oracle that takes in a value of some type and outputs a bit, we can start from a uniform superposition

of the type and amplify the amplitude of states for which the oracle outputs 1. The generalized

code for Grover’s algorithm in Qunity is as follows:

def @grover_iter{’a , $equal_superpos : ’a ,

@f : ’a → Bit} : ’a → ’a :=

lambda x → ctrl @f(x) [

$0 → x;

$1 → x ▷ gphase{pi}

] ▷ @reflect{’a , $equal_superpos}

end

def $grover{’a , $equal_superpos : ’a ,

@f : ’a → Bit , #n_iter} : ’a :=

if #n_iter = 0 then

$equal_superpos

else

$grover{’a , $equal_superpos , @f, #n_iter - 1} ▷
@grover_iter{’a , $equal_superpos , @f}

endif

end

Here @grover_iter takes in a type parameter ’a, a user-provided expression $equal_superpos
expected to create an equal superposition of all values of type ’a (as there is no way to do this

generically), and an oracle @f : ’a → Bit that is the function input to Grover’s algorithm. The

result is a program that transforms inputs of type ’a, bringing them closer to the input that satisfies

the oracle. Then, $grover is a parameterized expression rather than a program: it becomes a Qunity
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expression after the parameters are substituted in the preprocessing stage. It repeatedly applies

@grover_iter to a state that begins as an equal superposition, for a given number of iterations.

Observe the use of the ctrl construct in this example: this code works with any function @f,
including an irreversible one. This allows us to define quantum oracles for Grover’s algorithm in a

completely classical way, without ever needing to worry about the reversibility of the computations.

The construction of such subroutines is greatly facilitated by the newly added match construct -

a form of mixed or irreversible pattern matching that has minimal restrictions, functioning like

the matching constructs in classical programming languages. Consider, for instance, the following

example of a function testing whether a list of bits has an odd number of ones:

def @is_odd_sum{#n} : List{#n , Bit} → Bit :=

if #n = 0 then

lambda l → $0

else

lambda l → match l [

$ListEmpty {#n , Bit} → $0;

@ListCons {#n , Bit}( $0 , l') → @is_odd_sum{#n - 1}(l');

@ListCons {#n , Bit}( $1 , l') → @not(@is_odd_sum{#n - 1}(l'))

]

endif

end

Here, the List datatype is a list of variable but bounded length, defined as:

type List{#n , ’a} :=

| $ListEmpty

| @ListCons of (if #n <= 0 then Void

else ’a * List{#n - 1, ’a} endif)

end

The definition of @is_odd_sum is typed as a mixed program, with the match block typed as a

mixed expression. It is defined recursively, using @is_odd_sum{#n - 1} in the RHS of the pattern-

matching block. This means that it would be difficult to write this in terms of just the ctrl
construct, which types its RHS expressions as pure. Since match has mixed semantics, it is not

directly responsible for performing any uncomputation and is able to discard quantum data: hence,

it can avoid the erasure requirements present in ctrl.
Now, we can use this as an oracle in Grover’s algorithm simply by writing

def #n := 2 end

$grover{List{#n , Bit}, $equal_superpos_list{#n},

@is_odd_sum{#n}, 3}

where $equal_superpos_list is an expression generating an equal superposition of all possible

lists of bits with lengths bounded by #n (implementation in Appendix D.7). This code uses Grover’s

algorithm to amplify the probability of measuring the lists of bits (of length at most 2) the sum of

whose elements is odd.

4 GeneralizingQunity’s Control Flow
Qunity’s ctrl construct is very powerful, as it allows an arbitrary quantum computation, potentially

involving decoherence, to be used as a subroutine in a pure, reversible computation. However, this
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feature is accompanied by some notable restrictions that can make this construct more difficult to

use than necessary.

The first significant restriction is that the left-hand-side (LHS) expressions of the ctrl-block must

be classical—that is, they cannot include any invocations of u3 or rphase, and so their semantics

correspond to classical basis states. The second restriction arises from the requirement that the

right-hand-side (RHS) expressions must satisfy the erasure judgment, which stipulates that all

variables in the quantum context Δ of the scrutinee expression must be present “in the same way”

in each of the RHS expressions. If, for instance, Δ involves the variable 𝑥 , this essentially forces

the programmer to make all the RHS expressions have the form (𝑥, . . . ) if they want to output

something other than just 𝑥 itself. See Appendix H for the definition of the erasure inference rules.

The erasure requirement is essential to ensure that it is possible to implement ctrl: without it,
the semantics of ctrl will not be reversible. At the circuit level, the context Δ needs to be shared

to produce the RHS expressions, but applying the adjoint of the purified scrutinee expression

inevitably creates another copy of H(Δ) alongside the output H(𝑇 ′), and the erasure judgment is

needed to coherently delete this. The classical requirement in the orthogonality judgment does

not seem as obvious; indeed, applying an isometric transformation to an orthogonal set of states

maintains their orthogonality. However, dropping the classical requirement from ctrl typing

would allow for non-physical norm-increasing semantics. For instance, using the definition of

ctrl’s semantics from Appendix A.3 on the expression

$0 ▷ lambda x → ctrl x [$plus → x; $minus → x]

would result in the physically impossible state

√
2 |0⟩ (with norm

√
2 > 1). The correctness of the

circuit construction in Appendix L.3 relies on this classical-basis assumption.

It would be useful to have a construct that defines a reversible transformation between two

orthogonal sets of expressions, which do not necessarily need to be in the classical basis, while

avoiding the erasure requirement. Also, if the programmer is implementing classical logic (which

may be part of a larger quantum algorithm), it may be useful to have a construct that defines

irreversible control flow in a manner most similar to a match statement in classical programming

languages, again without the restrictions of the erasure judgment. These ideas give rise to two new

Qunity primitives: pmatch and match.

Table 1. Comparison of Qunity’s three pattern-matching constructs (extended version in Appendix C).

Feature ctrl match pmatch

Purely typed ✓ ✗ ✓
Mixed scrutinee allowed ✓ ✓ ✗
Mixed expressions allowed on RHS ✗ ✓ ✗
Non-orthogonal expressions allowed on RHS ✓ ✓ ✗
Non-classical expressions allowed on LHS ✗ ✗ ✓
Avoids erasure requirements ✗ ✓ ✓
Can be used in the RHS of a ctrl ✓ ✗ ✓
Can be used in the RHS of a match ✓ ✓ ✓
Can be used in the LHS or RHS of a pmatch ✓* ✗ ✓*

*if the isometry judgment holds
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4.1 The pmatch Construct
The pmatch construct (the “p” stands for “pure”) has a design that is very similar to that of the

symmetric pattern-matching language (SPM) described by Sabry et al. [25]. We can write a typing

judgment for pmatch as follows:

ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 ∀𝑗

ortho𝑇 ′
(
𝑒′
1
, . . . , 𝑒′𝑛

)
∅ ∥ Δ 𝑗 ⊢ 𝑒′𝑗 : 𝑇 ′ ∀𝑗

⊢ pmatch

𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ⇝ 𝑇 ′

T-Pmatch

Each pattern and branch must be appropriately typed using the same quantum context Δ 𝑗 , and both

the LHS and RHS must satisfy the orthogonality judgment (Appendix F). If the classical requirement

as in ctrl was still in place, then pmatch2 could be described as syntactic sugar over the ctrl
construct, using a technique known as specialized erasure [31]. Instead, we make pmatch more

general by allowing expressions in an arbitrary basis on both sides. This is done at the expense of

losing some of the capabilities of ctrl: since the semantics of pmatch is that of a pure program

rather than a pure expression, it does not include a scrutinee directly and thus does not have

the power to uncompute arbitrary mixed expressions via purification. It also has a requirement

dictating that the same contexts must be used symmetrically in the LHS and RHS, making it possible

to simply flip the two sides to invert the program.

We can describe the semantics of pmatch as:

J⊢ pmatch

𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ⇝ 𝑇 ′K |𝑣⟩ =
𝑛∑︁
𝑗=1

J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒′𝑗 : 𝑇 ′KJ∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩

Each term of the above sum is formed by applying the adjoint of the semantics of an LHS

expression, J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† : H(𝑇 ) → H(Δ 𝑗 ), followed by an application of the corre-

sponding RHS expression J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒′𝑗 : 𝑇 ′K : H(Δ 𝑗 ) → H(𝑇 ′). The images of the operators

J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 K correspond to a set of orthogonal subspaces of H(𝑇 ). In the special case

where all the LHS expressions are classical and |𝑣⟩ is a classical basis state, at most one of the terms

in the sum will be nonzero. The variables in the pattern will be extracted from the input, and the

result will be the RHS expression applied to their values. In general, all the branches of the pmatch
block can be taken in superposition. If the LHS patterns are spanning (Appendix F), then pmatch
will act as an isometry, as every input can be described as a linear combination of the patterns. If

the RHS expressions are also spanning, then the semantics of pmatch will correspond to a unitary

operator.

For an example of the benefit provided by pmatch, consider the following Qunity code which

prepares an equal superposition of Maybe{Bit}, which is isomorphic to a qutrit:

$0

▷ u3{2 * arccos(sqrt(1 / 3)), 0, 0}

▷ pmatch [

$0 → $Nothing {Bit};

$1 → @Just {Bit}($plus)

]

2
Called “match” by Voichick et al., but we change the terminology as match will be a different construct.
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Here, we are easily able to transform between two orthogonal bases of expressions, one in the

type Bit and the other in the type Maybe{Bit}. The semantics of this can be written as:

Jpmatch{. . . }KJu3(arccos(
√︁
1/3, 0, 0))K |$0⟩ =

=

(
JNothing{Bit}KJ$0K† + J@Just{Bit}KJ$plusKJ$1K†

) (
1

√
3

|$0⟩ +
√
2

√
3

|$1⟩
)
=

=

(
|Nothing{Bit}⟩ ⟨$0| + 1

√
2

|@Just{Bit}($0)⟩ ⟨$1| + 1

√
2

|@Just{Bit}($1)⟩ ⟨$1|
)

(
1

√
3

|$0⟩ +
√
2

√
3

|$1⟩
)
=

=
1

√
3

( |Nothing{Bit}⟩ + |@Just{Bit}($0)⟩ + |@Just{Bit}($1)⟩) .

If we were to implement this only using ctrl, we would need to write something like the

following:

$0

▷ u3 {2 * arccos(sqrt(1 / 3)), 0, 0}

▷ lambda x → ctrl x [

$0 → (x, $Nothing {Bit});

$1 → (x, @Just {Bit}($plus))

]

▷ lambda (

ctrl x' [

$Nothing {Bit} → ($0 , x');

@Just {Bit}(_) → ($1 , x')

]

) → x'

This is an instance of the specialized erasure pattern: in order to respect the erasure judgment, we

must explicitly uncompute the variable x through an inverted ctrl expression.

Moreover, isometries can be combined with pmatch in more complicated ways, such as the

following piece of code which allows us to view the rest of the tuple in the standard or Fourier

basis depending on the value of the first element:

$repeated{4, Bit , $minus} ▷ pmatch [

($0 , (x, y)) → (@qft {2}($plus , (x, ())), @qft {2}(y));

($1 , @qft {3}(x, y)) →
(@qft {2}($minus , (x, ())), @add_const{2, 1}(y));

]

Note that we can use the Quantum Fourier Transform (@qft, given in Appendix D.2) and @
add_const (from Section 3.1) on both sides of the pattern-matching block since the type system

can recognize that both of them have isometric (and in fact, unitary) semantics.

4.2 The match Construct
In a sense, match is a step in the opposite direction from pmatch: while pmatch extends the “pure”

capabilities of ctrl, match extends its “mixed” capabilities. The goal of the match construct is to
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have as few restrictions as possible. We can create a typing judgment for match, ensuring that the

types of the scrutinee, patterns, and branches align in the current context, while also requiring

orthogonality:

Γ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇 ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 ∀𝑗

classical(𝑒 𝑗 ) ∀𝑗 Γ, Γ𝑗 ∥ Δ,Δ1 ⊩ 𝑒′𝑗 : 𝑇
′ ∀𝑗

Γ ∥ Δ,Δ0,Δ1 ⊩ match 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ′

T-Match

and we can define its semantics as:

J𝜎 : Γ ∥ Δ,Δ0,Δ1 ⊩ match 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ′K
(
|𝜏, 𝜏0, 𝜏1⟩

〈
𝜏 ′, 𝜏 ′

0
, 𝜏 ′

1

��)
=

∑︁
𝑣∈V(𝑇 )

⟨𝑣 |
(
J𝜎 : Γ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇 K

(
|𝜏, 𝜏0⟩

〈
𝜏 ′, 𝜏 ′

0

��) ) |𝑣⟩ ·
·

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J∅ : ∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩ ·

·J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ1 ⊩ 𝑒′𝑗 : 𝑇
′K

(
|𝜏, 𝜏1⟩

〈
𝜏 ′, 𝜏 ′

1

��)
This is very similar to the semantics of ctrl, described in Appendix A.3. Here,

⟨𝑣 |
(
J𝜎 : Γ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇 K

(
|𝜏, 𝜏0⟩

〈
𝜏 ′, 𝜏 ′

0

��) ) |𝑣⟩
gives the probability of the expression 𝑒 being measured as |𝑣⟩ in the classical basis, with the

given classical and quantum context variables. The expression 𝑒 is thus treated as a “classical

black box”: thus, there is no way to distinguish the pure state
1√
2

( |0⟩ + |1⟩) from the mixed state

1

2
( |0⟩ ⟨0| + |1⟩ ⟨1|), since their probability distributions when measured in the classical basis are

identical. This behavior is exactly the same as in ctrl. However, unlike ctrl, which has pure

semantics, match has mixed semantics: it uses the superoperator J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ1 ⊩ 𝑒′𝑗 : 𝑇
′K

formed from the RHS expression 𝑒′𝑗 .
The match construct is designed to be used in circumstances where we do not care if our

computation is reversible or not. For instance, it is convenient to implement a logical-AND operation

using match as follows:

def @and : Bit * Bit → Bit :=

lambda x → match x [

($1 , $1) → $1;

else → $0;

]

end

Note that the else keyword here is a syntactic construct that gets converted to the remaining

expressions spanning Bit * Bit (that is, ($1, $0) and ($0, _)) during the preprocessing stage.

The match construct no longer has the erasure requirement from ctrl, simply because it does not

need to be reversible and can always discard any extra data it has, without the need to uncompute

it. Like for pmatch, there exists a version of match that can be built as syntactic sugar over ctrl.
This version can be constructed by simply combining all the variables in Δ into a tuple and pairing
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it with each of the RHS expressions, and then feeding the result into @snd. However, the additional
feature of match when it is implemented as a primitive is the fact that the RHS expressions, unlike

in ctrl, do not need to be pure. See the example in Section 3.2 for an instance where this becomes

useful for quantum algorithm implementation. The match construct is designed to be maximally

similar to pattern matching in classical languages, avoiding the restrictions placed on ctrl other
than the orthogonality requirement for the LHS. Using the match construct, Qunity programmers

may write long and complex classical algorithms without worrying about reversibility, and then

use them as subroutines in larger quantum algorithms.

5 Compiler Design
Qunity Source Code

Qunity Surface Syntax

Lexing, Parsing

Qunity Core Language

Preprocessing, Definition Evaluation

Superoperators as Matrices

Semantics Evaluation

Intermediate Representation

Compilation Step 1

Low-Level Circuit Specification

Compilation Step 2

Low-Level Circuit

Circuit Instantiation, Postprocessing

OpenQASM

Conversion

Final Density Matrices

Matrix Computation

Output Distribution (or Sample)

Born Rule

Circuit Simulation

Execution on Quantum Hardware

QASM Simulation

Typing Judgment Proof Structures

Typechecking

Fig. 1. Diagram showing the procedures used in the

Qunity interpreter (left path), and theQunity compiler

(right path). Solid and dashed arrows indicate polyno-

mial and exponential time processes respectively.

Figure 1 shows an outline of the main compo-

nents of the Qunity interpreter and compiler,

which are implemented in OCaml.

The preprocessor first evaluates the surface

syntax definitions and produces a single Qunity

expression, with the same abstract syntax as

in Voichick et al. The typechecker then uses

Qunity’s extended typing judgments to check

if the expression is well-typed and outputs a

data structure representing a proof of typing,

effectively elaborating the Qunity expression

with helpful information that can later be used

by the interpreter and the compiler, such as the

contexts associated with its subexpressions. We

can then either interpret or compile this elab-

orated expression: On the left side of Figure 1,

we depict a simulator explicitly calculating the

matrices corresponding to its semantics. This is

an exponentially slow process, however, as it is

equivalent to simulating a quantum computer

on a classical computer. The main focus of this

work is the compilation process shown on the

right side, transforming a high-level elaborated Qunity expression into OpenQASM 3. This process

can be performed efficiently on a classical computer, and the final output is a quantum circuit in a

form that can be run on quantum hardware.

5.1 Formalism
Before making improvements to Qunity’s original proof-of-concept compilation scheme, we found

it necessary to revise some of the mathematical formalism that governs how the low-level circuits

should be constructed in order to establish stronger correctness invariants throughout the process.

In particular, many Qunity values are stored in a quantum register, represented as bitstrings using

a type-based encoding. However, the space of all possible encodings does not necessarily span the

space of all possible register states—for instance, a qutrit (a 3-level quantum system) can be stored in

two bits, but only 3 out of 4 possible bit strings will be valid encodings. The compilation procedure

in Voichick et al. includes some low-level circuits (namely, the direct sum) that can potentially

output invalid encodings due to the way flag and output registers in the circuit’s components are

combined. The compilation lemmas do not address this possibility, which makes some parts of the

compilation procedure incorrect. Allowing redundancy in the encodings would be problematic
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because the extra qubits would need to be treated as flag or garbage qubits when inverting the direct

sum injections: a “non-standard” encoding would either cause an error to be raised or introduce

unwanted decoherence.

We considered two methods of resolving this problem. The first possibility was to create an

error-checking circuit component, which would ensure that any state in the invalid encoding

subspace is sent to the error subspace (with nonzero values for the flag qubits). However, the issue

with this approach is that such an error-checking component would need to be inserted after every

circuit component in the compilation procedure, making it much more complex and inefficient.

The alternative approach was to ensure that no states enter the invalid encoding subspace under

any conditions. We can create a mathematical definition of this as follows:

Definition 5.1. For a type 𝑇 , define the space of valid encodings as

W(𝑇 ) = span {|enc(𝑣)⟩ | 𝑣 ∈ V(𝑇 )} ,

where enc is the encoding function that maps values to bitstrings:

enc(()) = ""

enc(left𝑇0⊕𝑇1 𝑣) = "0" ++ enc(𝑣) ++ "0"max{size(𝑇0 ),size(𝑇1 ) }−size(𝑇0 )

enc(right𝑇0⊕𝑇1 𝑣) = "1" ++ enc(𝑣) ++ "0"max{size(𝑇0 ),size(𝑇1 ) }−size(𝑇1 )

enc((𝑣0,𝑣1)) = enc(𝑣0) ++ enc(𝑣1),

and the size of a type is defined as

size(Void) = 0

size(Unit) = 0

size(𝑇0 ⊕ 𝑇1) = 1 +max{size(𝑇0), size(𝑇1)}
size(𝑇0 ⊗ 𝑇1) = size(𝑇0) + size(𝑇1).

Definition 5.2. We say that it is possible to implement a norm non-increasing operator

𝐸 : H(𝑇 ) → H(𝑇 ′) if there is a low-level circuit implementing a unitary operator

𝑈 : C2
size(𝑇 )+𝑝 → C2

size(𝑇 ′ )+𝑓
for some 𝑝, 𝑓 ∈ N such that the following conditions hold:

•
〈
enc(𝑣 ′), 0⊗𝑓

��𝑈 ��
enc(𝑣), 0⊗𝑝

〉
= ⟨𝑣 ′ | 𝐸 |𝑣⟩ for all 𝑣 ∈ V(𝑇 ), 𝑣 ′ ∈ V(𝑇 ′),

• 𝑈
��
enc(𝑣), 0⊗𝑝

〉
∈ W(𝑇 ′) ⊗ C2

𝑓

for all 𝑣 ∈ V(𝑇 ), and
• 𝑈 † ��

enc(𝑣 ′), 0⊗𝑓
〉
∈ W(𝑇 ) ⊗ C2

𝑝

for all 𝑣 ′ ∈ V(𝑇 ′).

Definition 5.3. We say that it is possible to implement a trace non-increasing operator

E : L(H (𝑇 )) → L(H (𝑇 ′)) if there is a low-level circuit implementing a unitary operator 𝑈 :

C2
size(𝑇 )+𝑝 → C2

size(𝑇 ′ )+𝑓 +𝑔
for some 𝑝, 𝑓 , 𝑔 ∈ N such that for all 𝑣1, 𝑣2 ∈ V(𝑇 ), 𝑣 ′

1
, 𝑣 ′

2
∈ V(𝑇 ′),〈

𝑣 ′
1

�� E (|𝑣1⟩⟨𝑣2 |)
��𝑣 ′
2

〉
=

∑︁
𝑏∈{0,1}𝑔

〈
enc(𝑣 ′

1
), 0⊗𝑓 , 𝑏

���𝑈 | enc(𝑣1), 0⊗𝑝⟩⟨enc(𝑣2), 0⊗𝑝 |𝑈 †
���enc(𝑣 ′

2
), 0⊗𝑓 , 𝑏

〉
,

and, for all 𝑣 ∈ V(𝑇 ),
𝑈

��
enc(𝑣), 0⊗𝑝

〉
∈ W(𝑇 ′) ⊗ C2

𝑓 +𝑔
.

These definitions are formed by augmenting Definitions 6.2 and 6.3 from Voichick et al. with

conditions that guarantee encoding validity is preserved. Now, any optimizations to the low-level

circuit components need to respect the encoding-validity-preserving property.
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5.2 Gates, Circuits, and Circuit Specifications
The final output of the compiler takes the form of a low-level qubit circuit, consisting of a series of

gates, which can be:

• The identity

• A single-qubit𝑈3 (𝜃, 𝜙, 𝜆) gate
• A global phase gate

• A reset gate, which measures and resets a qubit to the |0⟩ state
• An error-measurement gate, which measures a qubit and signals an error if it is in the |1⟩ state
• A swap gate

• A controlled gate, with a list of control qubits

• Special zero-state labels and potential deletion labels, whose uses are detailed in Section 6.3.

These gates can very straightforwardly be converted into OpenQASM 3 code. However, each

gate must already contain information that specifies the indices of the qubits it is applied to, which

makes this data structure lack modularity. When compiling the intermediate representation into

low-level circuits, we often want to separately construct two circuit components representing

different operators, and then feed the output of one into the input of the other, or maybe reuse

the same input and prep qubits for controlled versions of two different operators (see Section 6.1),

which is difficult to do with just the gates. The Qunity compiler uses a system of circuits and circuit

specifications to allow for the construction of low-level circuits out of smaller components. This

system is constructed in a way that facilitates the tracking of qubits in various registers to ensure

that the components fit together properly.

A circuit consists of a series of gates combined with additional data that specifies the roles of

the qubits used by it - specifically, which qubit indices constitute the input registers, the output

registers, the prep register (additional inputs prepared in the |0⟩ state), the flag register (output

qubits expected to be in the |0⟩ state in the absence of error), and the garbage register (output

qubits that are measured and discarded, corresponding to a partial trace operation).

A circuit specification is a wrapper around a function, circ_fun, that can construct a circuit

given a list of input registers, a set of used wires (qubits that are in use elsewhere and cannot be

used as new prep qubits), and additional instantiation settings that can dictate certain aspects of

how the circuit is built. In addition to the circuit, this function also outputs the updated set of

used wires. The circuit specification also includes data on the required input and output register

dimensions. Circuit specifications are more modular than gates or circuits, because they are not tied

to specific qubit indices - these are not realized until their circ_fun is called. Thus, it is possible
to easily construct circuit specifications from other circuit specifications through various circuit

construction functions. For instance, one such function could take in two circuit specifications,

and define its circ_fun to instantiate the first specification into a circuit, and then use its output

registers and used wires set to instantiate the second specification into a circuit, and then output a

combined circuit whose gate is a sequence of the two original circuits’ gates. The possible ways in

which circuit specifications can be combined correspond closely to the low-level circuits defined in

Appendix K.

5.3 The Intermediate Representation
The intermediate representation used in the Qunity compiler describes high-level circuit diagrams

in which the wires correspond to Hilbert spaces associated with Qunity types and contexts. This

representation is built from operators that take in some list of input registers and output some

registers. This level abstracts away the “flag” and “garbage” utility registers and can thus describe

operators with non-unitary semantics. Operators in the intermediate representation can be either
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built from smaller components using primitive constructors (corresponding to specific low-level

circuit components), or they can be constructed from a series of commands in a fashion similar to

a simple imperative language. These custom operators can associate registers with variable names

and apply other operators to them, enforcing the condition that every variable must be used exactly

once. This design makes it convenient to describe high-level circuits corresponding to each Qunity

typing rule.

Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0 Γ ∥ Δ,Δ1 ⊢ 𝑒1 : 𝑇1
Γ ∥ Δ,Δ0,Δ1 ⊢ (𝑒0,𝑒1) : 𝑇0 ⊗ 𝑇1

T-PurePair

(a)

H(Δ)

H(Δ)

H(Γ) H (Γ)

H (Δ)
Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0

H(𝑇0)

H (Δ0)

Γ ∥ Δ,Δ1 ⊢ 𝑒1 : 𝑇1
H(𝑇1)

H (Δ1)

(b)

| TPurePair { t0; t1; d; d0; d1; e0; e1; _ } → begin
let op0 = compile_pure_expr_to_inter_op e0 in
let op1 = compile_pure_expr_to_inter_op e1 in

inter_func_marked "TPurePair" iso un
[("g", gsize); ("dd0d1", dsize)]
[

inter_comment "Starting TPurePair";
inter_letapp ["d"; "d0d1"]

(IContextPartition (d_whole , map_dom d))
["dd0d1"];

inter_letapp ["d0"; "d1"]
(IContextPartition (map_merge_noopt false d0 d1,

map_dom d0))
["d0d1"];

inter_letapp ["d"; "d*"] (IContextShare d) ["d"];
inter_letapp ["dd0"] (IContextMerge (d, d0)) ["d"; "d0"

];
inter_letapp ["d*d1"] (IContextMerge (d, d1)) ["d*"; "

d1"];
inter_letapp ["g"; "t0"] op0 ["g"; "dd0"];
inter_letapp ["g"; "t1"] op1 ["g"; "d*d1"];
inter_letapp ["res"] (IPair (t0, t1)) ["t0"; "t1"];
inter_comment "Finished TPurePair";

]
[("g", gsize); ("res", tsize)]

end

(c)

Fig. 2. (a) The typing judgment T-PurePair for typing pairs of Qunity expressions with a product type.

(b) The compilation circuit for T-PurePair as presented in Appendix L.3.

(c) Excerpt from the compile_pure_expr_to_inter_op function in theQunity compiler, written in OCaml.

This shows the compilation of the T-PurePair typing judgment into the intermediate representation, corre-

sponding to the circuit in (b).

In the first step of the compilation procedure, the typing judgment proofs obtained from Qunity

expressions by the typechecker are converted into custom operators in the intermediate repre-

sentation. This can be done easily due to the close correspondence between the intermediate

representation and the circuit diagrams described in Appendix L. Figure 2c shows the code for

compiling T-PurePair into the intermediate representation. We can see that this describes an

operator that is a map of the form H(Γ) ⊗ H (Δ,Δ0,Δ1) → H(Γ) ⊗ H (𝑇 ). First, the typing

judgment proofs of 𝑒0 and 𝑒1 are compiled into the intermediate representation. Then, they are

used in the inter_func_marked, which is a wrapper around the IFunc (user-defined operator)

constructor, adding an extra operator around it using isometry and unitary judgment information.

The inter_comment is just used to create annotations for debugging purposes. Next, the input

register corresponding to the space H(Δ,Δ0,Δ1) is partitioned into separate registers correspond-

ing to H(Δ), H(Δ0), and H(Δ1). Note that the compiler maintains an invariant that in a register

corresponding to a context, the values of all variables must be stored in lexicographic order. Thus,

the partitioning and merging circuits are not necessarily the identity and may involve some re-

arrangement of wires, which is done at the low level through a special circuit construction function.

Then, the share gate (whose low-level implementation involves a new prep register of the same

size as the input and CNOT gates) is applied, followed by the previously compiled operator circuits,

and the result is combined into a single register. While it can be somewhat verbose, this code is

essentially equivalent to the circuit diagram shown in Figure 2b.
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6 Low-Level Optimizations
This section describes optimizations that modify the second step of the Qunity compilation proce-

dure (where the intermediate representation is instantiated into low-level circuits that keep track

of qubit indices) and additional post-processing steps that are applied to the resulting circuits.

Each time a circuit component is instantiated, the compiler needs to recursively instantiate its

constituent parts, and decide how to connect the inputs and outputs of the parts to each other. This

process may also require allocation of additional prep qubits, which increases the complexity of the

generated circuit. The goal of the low-level optimizations is to improve the process of constructing

these low-level circuits, to avoid unnecessarily using many qubits at once.

6.1 Improving the Direct Sum Circuits
An important component of the second step of the compilation procedure is being able to implement

the direct sum of two operators. Given circuits 𝑈0 implementing 𝐸0 : H(𝑇0) → H(𝑇 ′
0
) (with input

size 𝑠0, output size 𝑠
′
0
, prep size 𝑝0, and flag size 𝑓0), and 𝑈1 implementing 𝐸1 : H(𝑇1) → H(𝑇 ′

1
)

(with corresponding sizes 𝑠1, 𝑠
′
1
, 𝑝1, 𝑓1), the goal is to implement the direct sum circuit 𝐸0 ⊕ 𝐸1 :

H(𝑇0 ⊕ 𝑇1) → H(𝑇 ′
0
⊕ 𝑇 ′

1
). The implementation must be in accordance with Definition 5.2.

An initial naïve implementation that still respects the encoding-validity-preserving property

specified in Definition 5.2 uses min{𝑠0, 𝑠1} + 𝑝0 + 𝑝1 prep wires. Because the number of prep wires

scales with the size of the input register, this can cause the number of qubits used by the circuit to

grow rapidly when an operator is summed with itself multiple times, which is a common pattern

in the compilation of quantum control.

We have created an improved version of the direct sum circuit, which still ensures encoding

validity but reuses input and prep qubits as much as possible. Table 2 shows the number of prep

qubits needed for this improved circuit in different cases. The full circuits and a proof of correctness

for them are shown in Appendix I.

Table 2. Prep qubits needed for the improved direct sum circuit in 4 different cases. The 4 other cases can be

obtained from these ones by applying a commutativity isomorphism (which is just an 𝑋 gate).

Case Number of required prep qubits

𝑠0 ≥ 𝑠1, 𝑠
′
0
≥ 𝑠′

1
, 𝑝0 ≥ 𝑝1 𝑝0 +max{0, 𝑓1 − 𝑓0}

𝑠0 ≥ 𝑠1, 𝑠
′
0
≥ 𝑠′

1
, 𝑝0 ≤ 𝑝1 𝑝1 +max{0, 𝑓1 − 𝑓0 + 𝑝0 − 𝑝1}

𝑠0 ≥ 𝑠1, 𝑠
′
0
≤ 𝑠′

1
, 𝑝0 ≥ 𝑝1 𝑝0 + 𝑠′1 − 𝑠′

0

𝑠0 ≥ 𝑠1, 𝑠
′
0
≤ 𝑠′

1
, 𝑝0 ≤ 𝑝1 𝑝1 +max{0, 𝑠′

1
− 𝑠′

0
+ 𝑝0 − 𝑝1}

6.2 Recycling of Garbage and FlagQubits
An important optimization to the Qunity compiler comes from the possibility of measuring and

resetting garbage and flag qubits in the middle of a circuit and reusing them as new prep qubits

for subsequent circuit components - that is, recycling the garbage and flag qubits. This has to be

done with some care, because there are situations in which we want to avoid resetting these qubits.

Specifically, we may be taking the purification of a circuit, which feeds its garbage qubits into

the output register, or we may be using an error-handling circuit, which uses the flag register to

coherently toggle a new prep qubit, outputting values in the space H ⊕ C, where H is the output

space of the original circuit. This means that a circuit specification has to “know,” at the time of

its instantiation into a circuit, whether or not it is allowed to recycle its garbage or flag register.

This is done by using the instantiation settings, which are passed to a circuit specification at the
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time of instantiation, and are used to decide whether the qubits can be recycled. Purification is

implemented as a function that takes in a circuit specification and outputs another one, whose

instantiation function passes in a value of false for the instantiation settings’ reset_garb field
when calling the wrapped circuit specification’s instantiation function. The same thing happens

with the error-handling circuits and the reset_flag field. This optimization reduces the qubit

count of the circuits output by the compiler, since now, if there are many circuit components in

series that each can throw an error and are not part of a larger error-handling component, the

compiler does not have to allocate new qubits every time.

While more advanced recycling techniques exist, such as the one found in Jiang [15], the simple

recycling technique we introduced here is closely tied to the specifics of Qunity’s compilation

procedure, and thus is not directly comparable. A potential future step would be to incorporate

some of the more advanced qubit recycling methods from the literature as part of the postprocessing

stage, where they can be directly applied to a quantum circuit without the need to integrate with

any Qunity-specific data structures.

6.3 Post-Processing Optimizations
We have introduced a post-processing step that optimizes the quantum circuits generated by the

Qunity compiler. The overall procedure for low-level optimization converts the input circuit into a

list of gates and then repeatedly applies optimization passes to this list, until it reaches a fixed point.

In a single optimization pass, the gate list is processed from left to right, detecting possible patterns

that can be optimized. This process is guaranteed to eventually terminate, since each change made

to the circuit has to decrease the number of qubits or gates. The currently implemented pass

includes the following:

• Canceling a gate that is immediately followed by its adjoint.

• Combining adjacent controlled-𝑈 and anti-controlled-𝑈 gates into just𝑈 .

• Removing physical swap gates without controls and relabeling the subsequent wires.

• Performing a commutation pass: taking a gate and commuting it to the right until either it

cannot commute past something (in which case it is reverted to its original position) or it

cancels with something.

• Classical propagation - moving through the circuit and keeping track of qubits we know to

be in a classical state, modifying any gates that are controlled on them by removing controls

or deleting the gates.

• Detecting regions where a CNOT gate is applied, sharing one qubit to another one initially

in the |0⟩ state, then any other gates are the Pauli𝑋 gate or only use either qubit as a control,

and then an identical CNOT is applied. In this case, it is possible to transfer the controls on

the second qubit to the first one, which can make it possible to delete the second qubit with

the procedure described below.

• Deleting qubits (or gates on a qubit between measurements) if certain conditions are met.

Wewill now discuss this last point inmore detail. This mechanism relies on high-level information

from the isometry judgment in the Qunity typechecker (see Appendix G) to identify candidate

qubits for potential deletion. These candidates are either garbage qubits or flag qubits that we are

certain will always be in the |0⟩ state when measured.

The candidate qubits are identified during the procedure of instantiating a circuit specification

into a concrete circuit. The instantiation settings, which include Boolean fields reset_garb and
reset_flag for whether or not the garbage and flag registers should be reset, as described in

Section 6.2, also contain a field iso for whether or not this circuit can be interpreted as an isometry

and thus whether we can expect the flag qubits to be in the |0⟩ state. This variable is set to true by
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a special wrapper circuit specification that acts very similarly to the purification and error-handling

circuits, and is added to the circuit based on the results of the isometry judgment in the first step of

the compilation process. Now, during instantiation, if reset_garb is true, then a special gate called
a potential deletion label is added to the qubits in the garbage register. Similarly, if both reset_flag
and iso are true, the potential deletion labels are also added to the flag register. Additionally,

instead of measuring flag qubits known to be in the |0⟩ state, the compiler adds a special zero-state

label onto them.

However, not all candidate qubits are safe to delete because they may be entangled with the

output qubits at some point during the computation, possibly being used as ancillas. In the post-

processing stage, all the deletion labels are first shifted to the left as far as possible until they hit a

measurement gate or a zero-state label to ensure that they are selecting an entire region of interest.

Then, during an optimization pass, when seeing a potential deletion label, the segment between it

and the next measurement is evaluated to determine whether it is safe to delete. The procedure

determines that all gates in the region involving the selected qubit are safe to delete if they are

all Pauli 𝑋 gates, controlled 𝑋 gates with the qubit as a target, or uncontrolled global phase gates.

This is because if the qubit starts in the |0⟩ state, then applying only these gates will not have any

effect on the reduced density matrix of the system obtained by removing the qubit. At the end of

the optimization procedure, if a qubit has no more gates remaining on it, it is completely removed

from the circuit.

7 High-Level Optimizations
This section describes optimizations that modify the first step of the Qunity compilation procedure,

where the typing judgment proof structures are converted to the intermediate representation.

7.1 Simplifying the Orthogonality Circuit
A significant part of the circuit for compiling the ctrl, match, and pmatch constructs is the following
circuit component:

H(𝑇 )⊕𝑛
H(𝑇 ) Jortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
K

⊕
𝑗 J𝑒 𝑗 K

† ⊕
𝑗 H(Δ 𝑗 )

This circuit is quite inefficient: it uses 𝑂 (𝑛) extra qubits to store the register corresponding to

H(𝑇 )⊕𝑛 , and it involves many expensive associativity isomorphisms to transform the direct sum

structure of the given space to something of the form H(𝑇 ) ⊕ (H (𝑇 ) ⊕ (H (𝑇 ) ⊕ . . . )). In this

work, we introduce two major changes to this: allowing direct sums of operators to be taken along

a binary tree, and replacing the two above circuit components with a single one that goes directly

fromH(𝑇 ) to
⊕

𝑗 H(Δ 𝑗 ), without the intermediate step ofH(𝑇 )⊕𝑛 . Refer to Appendix J for the

definitions and notations used to describe sums of operators along a binary tree and leveling a tree

to a given height.

We can derive a binary tree from the structure of the orthogonality judgment (Appendix F), as

follows:

Definition 7.1 (Tree derived from the orthogonality judgment).

• The trees derived from O-Void, O-Unit, and O-Var are all Leaf.

• The tree derived from O-IsoApp is the same as that derived from ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
.

• The O-Sum rule states that if 𝑒1, . . . , 𝑒𝑚 are orthogonal in𝑇 and 𝑒′
1
, . . . , 𝑒′𝑚 are orthogonal in

𝑇 ′
, then the left injections of the 𝑒 𝑗 and the right injections of the 𝑒

′
𝑗 together are orthogonal

in 𝑇 ⊕ 𝑇 ′
. The tree derived from O-Sum is a root whose left subtree is the tree derived

from the left expressions and whose right subtree is the tree derived from the right
expressions.
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• The O-Pair rule states that if 𝑒1, . . . , 𝑒𝑚 are orthogonal in 𝑇 , and for each 1 ≤ 𝑗 ≤ 𝑚,

the expressions 𝑒′𝑗,1, . . . , 𝑒
′
𝑗,𝑛 𝑗

are orthogonal in 𝑇 ′
, then the list of pairs (𝑒 𝑗 , 𝑒′𝑗,𝑘 ) are or-

thogonal in 𝑇 ⊗ 𝑇 ′
. The tree derived from S-Pair is constructed by taking the tree R0

derived from ortho𝑇

(
𝑒1, . . . , 𝑒𝑚

)
, and replacing each 𝑗th leaf with the tree R 𝑗

1
derived from

ortho𝑇 ′
(
𝑒′𝑗,1, . . . , 𝑒

′
𝑗,𝑛 𝑗

)
. This essentially decomposes a tensor product into a direct sum

structure.

• The tree derived from from O-Sub is constructed by removing all subtrees whose leaves

only contain discarded expressions.

Now, we want to define Jortho𝑇
(
𝑒1, . . . , 𝑒𝑛

)
K in such a way that when ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
holds

with tree structure R, then for all 𝑗 , for all 𝜏 𝑗 ∈ V(Δ 𝑗 ), we have that
Jortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
KJ𝑒 𝑗 K

��𝜏 𝑗 〉 = inj
R
𝑗

��𝜏 𝑗 〉 .
That is, we are constructing an operator

Jortho𝑇
(
𝑒1, . . . , 𝑒𝑛

)
K : H(𝑇 ) →

⊕
𝑗 :R

H(Δ 𝑗 ) .

This construction is given in Appendix L.2.

With this change, we can now modify the circuit for the compilation of T-Ctrl to use a single

circuit component that converts the inputH(𝑇 ) directly into a direct sum of the Δ 𝑗 over the tree

derived from the orthogonality judgment. Then, for the rest of the circuit, all direct sums can be

taken along this tree instead of a standardized associativity structure.

7.2 Compilation of pmatch
The same construction as above can be used to construct a high-level circuit to compile T-Pmatch

into the intermediate representation. This can be done as follows:⊕
𝑗 :R

0

H(Δ𝑗 )
⊕

𝑗 :R
1

H(Δ𝑗 )
H(𝑇 ) Jortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
K TreeRearrange(R0,R1) Jortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
K† H(𝑇 ′)

where R0 and R1 are binary trees derived from the respective orthogonality judgments, except

their leaves are also labeled with the indices of the corresponding expressions. Then, TreeRear-

range is an algorithm for transforming one binary tree into another using only operations from a

certain set, encoded as a quantum circuit.

Fig. 3. An example of the con-

ditional commutation tree trans-

formation, which swaps the two

vertices shown in this diagram.

Their paths must be identical ex-

cept for the very first step from

the root.

The possible operations are:

• A right tree rotation, which can be implemented as the

associativity isomorphism (𝑇0 ⊕ 𝑇1) ⊕ 𝑇2 → 𝑇0 ⊕ (𝑇1 ⊕ 𝑇2)
(low-level circuit implementation in Appendix K).

• A left tree rotation, implementable as the adjoint of the

associativity isomorphism.

• Switching the left and right subtree, which can be imple-

mented with a single Pauli 𝑋 gate.

• Other transformations applied to the subtrees of a given

tree, which can be implemented using the direct sum circuit.

• A sequence of two transformations, which can be imple-

mented as a sequence of two circuits.

• A special conditional commutation transformation, shown

in Figure 3. It can be implemented with a multi-controlled

𝑋 gate, where the target is the qubit corresponding to the root node, and the controls have

states corresponding to the path taken.

The algorithm for transforming trees, expressed in terms of these allowed operations, is:
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(1) Transform the input tree so it has the same shape as the goal, ignoring the values at the

leaves. This can be done by transferring nodes from one subtree to another making sure they

have the correct numbers, and then making recursive calls on each subtree. The transferring

of nodes can be accomplished by a sequence of tree rotations.

(2) For each leaf value that needs to be transferred to a different location, do the following to

switch the leaves at the two locations:

(a) Bring the leaf at the larger depth (the one farther from the root) to the same depth as the

other one. This can be accomplished by a sequence of tree rotations and commutations.

(b) Make the trees have identical paths from the root except for the first place in which

their paths differ. This can be done by a sequence of commutation operations applied

to the appropriate subtrees.

(c) Apply the special conditional commutation operation to switch the two leaves.

(d) Apply the operations in the first two steps in reverse order so that the only effect of

the entire transformation is swapping the two leaves of interest.

In the OCaml implementation of the compiler, running this algorithm creates a record of all the

tree transformations that need to be applied to perform the operation. Then, the resulting tree

transformations are converted into the intermediate representation in the manner described above,

thus completing the compilation of pmatch. Beside the fact that this allows pmatch to work in

an arbitrary basis, it is also much more efficient than implementing a classical-basis version of

it as syntactic sugar over ctrl: the tree rearrangement algorithm attempts to avoid significantly

increasing the height of the tree at any intermediate step, which means that it does not unnecessarily

use additional qubits.

8 Evaluation
In this section we detail our evaluation of the Qunity compiler. We primarily focus on the effective-

ness of the compiler in reducing compiled circuit size, but we also report on our differential unit

testing that we used to gain confidence in the correctness of our implementation.

Compilation Efficiency. We evaluate the Qunity compiler on several benchmark programs, shown

in Table 3. We compare the most recent version of the compiler with the initially implemented ver-

sion, which followed directly the compilation procedure of Voichick et al. (with the direct sum circuit

corrected to preserve encoding validity but not optimized). This baseline did not support the new

pattern-matching constructs, so where possible, the benchmark code was rewritten to equivalent

expressions using only ctrl. We also compare the performance of our compiler to low-level circuits

constructed directly in Qiskit [23] version 1.1.1, using circuits from qiskit.circuit.library
when relevant. The gate counts reported in this table are after the circuit has been transpiled

by Qiskit with basis_gates=["u3", "cx"], optimization_level=3 (to only use single-qubit

gates and CNOT).

The results show a very significant improvement of the optimized Qunity compiler compared to

the unoptimized one. In many instances, the optimized Qunity compiler reaches a gate count that

is comparable to the handcrafted Qiskit implementation, whereas the baseline Qunity compiler

resulted in orders of magnitude larger circuits. Still there is room for improvement: to uncover

the limits of our compiler implementation, we included a benchmark that implements Grover’s

algorithm using the list sum oracle, which compiles into 13,470 low-level gates, while it is possible

to manually construct a small circuit that accomplishes the same task. The inefficiencies arise due

to isomorphisms and transformations between types that are introduced during the compilation

procedure: while the optimizations introduced in Section 7 help to simplify them to a large extent,

there are still many inefficiencies present that are nontrivial to eliminate.
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Table 3. Benchmark tests comparing the performance of the optimized and unoptimizedQunity compilers

with an implementation in Qiskit. The code used for these benchmarks is shown in Appendix D. The missing

entries in the unoptimizedQunity compiler result from the unoptimized compiler not supporting the new

pattern-matching constructs. We also do not have a suitable reference for the order-finding circuit. The entry

marked with ?? has such a large circuit that it was infeasible to transpile it to obtain a gate count.

Benchmark

Qunity (unoptimized) Qunity (optimized) Qiskit

Qubits Gates Qubits Gates Qubits Gates

Phase conditioned on

AND of 5 qubits

769 147,871 9 121 5 101

Quantum Fourier

Transform (5 qubits)

15 282 6 143 5 54

Phase estimation

example (5 qubits)

75 1465 6 275 5 60

Order finding

(#n=5, #a=13)
– – 10 460 – –

Reversible CDKM

Adder [7] (5 bits)

1031 160,321 11 152 11 179

Grover (5-bit match

oracle, 1 iteration)

1131 ?? 7 760 6 389

Grover (List sum oracle,

#n=2, 1 iteration)
– – 11 13,470 5 116

(a) (b)

Fig. 4. (a) The circuit produced by compiling aQunity program for preparing the state
1√
2

( |00⟩ + |11⟩) without
compiler optimizations. (b) The circuit produced using the the optimized compiler for the same program.

3

Still, for most programs, including smaller ones that we used for testing, our Qunity compiler

results in practical circuits. For one example, Figure 4 demonstrates the improvement in the

efficiency of the compiler resulting from the optimizations implemented in this workwhen preparing

a Bell state using the quantum control construct. Note that the simplest way to prepare this state

in Qunity is using entanglement through variable reuse: $plus ▷ lambda x → (x, x), which
compiles to the circuit in Figure 4b even with the unoptimized compiler. However, for this example,

3
These circuits have measurements because the output register is always measured at the end when running the Qunity

compiler.
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the entanglement is achieved by defining a CNOT gate in terms of the ctrl construct, which has a

much more complicated compilation procedure. (This can be used to write circuit-style programs

in Qunity: see Appendix E). The circuit produced by the unoptimized compiler, in Figure 4a, needs

17 qubits and 27 CNOT and controlled-SWAP gates just to represent an operation equivalent to

a single CNOT gate. This is due to a combination of several factors, including the unoptimized

direct sum circuits, the unnecessary associativity isomorphisms, and the redundancy in the original

orthogonality circuit. It is difficult to simplify this circuit by post-processing alone: the higher-level

optimizations described in this work are necessary. Using the combination of these optimization

techniques, the compiler is able to reduce this circuit to a form that can be more easily handled by

the post-processing optimizations and converted to the circuit in Figure 4b.

Differential Unit Testing. Finally, we also created a test suite to verify the correctness of the

compilation procedure, checking it against the output of the interpreter. The test proceeds as

follows: given a Qunity expression 𝑒 of type 𝑇 , we evaluate its semantics as a density matrix

𝜌 = J∅ : ∅ ∥ ∅ ⊩ 𝑒 : 𝑇 K using the Qunity interpreter. We run the compiler to generate a low-level

qubit circuit, and simulate this circuit. Taking a projection onto the subspace where the flag register

is in the |0⟩ state and taking a partial trace over the garbage registers, we obtain a state 𝜌 . Then,

for each 𝑣 ∈ V(𝑇 ), we check that ⟨𝑣 | 𝜌 |𝑣⟩ = ⟨enc(𝑣) | 𝜌 |enc(𝑣)⟩ .
Most programs in this suite are small, and many are just simple demonstrations of various

patterns (such as pattern matching constructs nested in different ways, operations on datatypes,

and error handling). We exclude programs from Table 3 that are too expensive to simulate.

9 Related Work
Many existing quantum programming languages are based on the paradigm of “quantum data,

classical control,” which was popularized by Selinger [26]. In this model, quantum circuits can be

constructed by a classical computer, using classical data which may be obtained by performing

measurements on qubits. Most of the widely-used quantum languages rely on this paradigm: from

low-level languages like OpenQASM [6], Cirq [9], and Qiskit [23] to higher-level languages like

Quipper [11], Q# [29] and Qualtran [13].

However, we often want to express algorithms that use quantum control flow and manipulate

complex data structures in quantum superposition: for instance, Grover’s algorithm [12] over

arbitrary oracles or quantum walk-based algorithms such as Childs et al. [4]. This runs into

problems, as fully general quantum control flow is physically infeasible, as argued by Bădescu and

Panangaden [2] and later Yuan, Charles and Villanyi, Agnes and Carbin, Michael [38]. A number of

languages have attempted to address this issue through restricting control flow, including QML [1],

Symmetric Pattern Matching (SPM) [25], Silq [3], and Tower [37]. Of these, Silq and Tower compile

to circuits.

Venev’s [30] compiler for Silq programs is focused on the problem of uncomputation, specifically

in compiling and optimizing away the results of the common compute-copy-uncompute pattern

used in the generation of quantum oracles. Silq’s uncomputation, however, is restricted to applica-

tions of qfree (strictly classical) functions - Qunity’s ctrl construct, on the other hand, enables

uncomputation of an arbitrary mixed program (although doing this on a program that introduces

superposition will lead to norm-decreasing semantics). While none of our examples make use of

this feature, it may be useful in more advanced quantum algorithms such as the triangle finding

algorithm [19], which uses a quantum subroutine that is itself a probabilistic quantum algorithm.

Tower’s compiler, Spire [36] is closer in its aims to this work. Like Qunity, Tower is a high-level

language with sophisticated (QRAM-based) control flow, and Spire aims to optimize it at a high

level. Spire uses two key optimizations: conditional flattening (which consists of combining nested
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if statements, reducing the controls on internal unitaries) and conditional narrowing, which pulls

statements out of quantum ifs (again, reducing the number of controls). These two optimizations

prove surprisingly valuable in practice, enabling a significant reduction in the circuits’𝑇 -complexity,

and showing that high-level optimizations of quantum programs could be useful in practice.

Qunity is set apart from the previous work listed above by its focus on compositionality and

its denotational semantics. It takes the unique and unusual approach of defining both a pure and

mixed typing judgment, allowing for a richer interplay of reversible and irreversible programming.

Qunity is similar to classical functional languages, while languages like Silq and Tower follow an

imperative paradigm. The metaprogramming layer allows for higher-order functions and recursion

without running into the fundamental limitations of implementing them as quantum constructs [2].

Qunity’s pattern-matching constructs offer a novel and expressive way of expressing quantum

control flow.

10 Conclusion and Future Work
In this work, we show how to efficiently compile Qunity, a high-level quantum programming

language with compositional semantics, by combining low-level optimizations that simplify the

construction of qubit circuit components with higher-level optimizations that simplify manipula-

tions of Hilbert spaces.

There are more optimizations that we would like to implement in the future. For example, in

instances where no purification is performed, the try/catch statement could be implemented by

measuring the flag register, and applying some gates depending on the measurement outcome.

Similarly, the match construct could be implemented by measuring the scrutinee expression and

using the result to evaluate one of the RHS expressions. Including this capability can simplify many

Qunity programs with classical computation outside of quantum subroutines.

We could also change the target language of the Qunity compiler from OpenQASM to a quantum

intermediate representation such as QIR [18], MLIR [20], or HUGR [28]. Note that these representa-

tions are not directly comparable to Qunity’s IR, which is defined using operators closely associated

to Qunity’s control flow constructs. Compiling from Qunity’s IR to one of these representations

would allow Qunity to more easily take advantage of existing optimizers at the post-processing

stage, and make the compilation to hybrid quantum-classical programs more feasible.

With improvements like these, we believe Qunity can truly become a practical quantum program-

ming language, offering a promising alternative to circuit-based quantum languages and advancing

the development of tools for high-level quantum programming and algorithm design.

Data Availability Statement
The implementation of the Qunity interpreter and compiler is publicly available [22].
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Appendices
A Formal Definitions of Syntax, Typing Judgments, and Semantics

B Grammar of the Surface Syntax

C Comparison of Control Flow Constructs

D Benchmark Test Programs

E Circuit-Style Programming
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I Direct Sum Circuit Correctness Proof

J Notation and Definitions for Binary Trees

K Proofs of Correctness for Low-Level Compilation

L Proofs of Correctness for High-Level Compilation

A Formal Definitions of Syntax, Typing Judgments, and Semantics
A.1 Syntax
Figure 7 shows the base abstract syntax of the Qunity language. Expressions 𝑒 are assigned types𝑇

and programs 𝑓 are assigned program types 𝐹 (Figure 5). Here, 𝑥 ranges over some set of variable

names and 𝑟 ranges over a representation of real numbers. This work adds two new primitive

syntactic constructs to the original Qunity language: match and pmatch, discussed in Section 4.

A.2 Type System
Consider an expression 𝑒 typed as Γ ∥ Δ ⊢ 𝑒 : 𝑇 , that is, 𝑒 has pure type 𝑇 with classical context

Γ and quantum context Δ. The semantics of such an expression corresponds to a pure state in

the Hilbert spaceH(𝑇 ) associated with the type 𝑇 . Figure 8 shows the typing rules for the pure

expression typing judgment. While the separation into “classical” and “quantum” contexts may

seem unexpected for a language like Qunity that aims to unify classical and quantum computation,

the classical contexts do in fact play an important role in the type system. When a variable 𝑥 is in a

classical context Γ, it does not mean that it is literally in a classical register - it means that from the

perspective of the current expression, we view it as being in a classical basis state and interact with

it by sharing it relative to the classical basis. This also means that the type system does not place

the same relevance restrictions on variables in classical contexts as it does on quantum variables:

we may assume that the compiler automatically uncomputes the variable when it goes out of scope.

The primary use case for these classical contexts is the ctrl construct: as seen in the T-Ctrl rule,

the quantum contexts of the left-hand-side (LHS) pattern expressions become classical contexts

when typing the right-hand-side (RHS) expressions. This allows the programmer to safely ignore

these variables in the RHS expressions, knowing that when compiling T-Ctrl, their uncomputation

will be handled automatically.

The semantics of an expression typed with the mixed typing judgment as Γ ∥ Δ ⊩ 𝑒 : 𝑇

corresponds to a mixed state in the Hilbert spaceH(𝑇 ) associated with the type 𝑇 . Observe that

the rule T-Mix allows pure expressions to be typed as mixed.

Note that this presentation differs from the original mixed expression typing rules in Voichick

et al., which did not include classical contexts since the mixed expression typing judgment has no

relevance restrictions on the quantum variables. The primary reason for this change is consistency

between ctrl and the newly introduced match: for instance, it allows expressions of the following
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𝑇 .
.
.
.= (data type)

Void (bottom)

| Unit (unit)

| 𝑇 ⊕ 𝑇 (sum)

| 𝑇 ⊗ 𝑇 (product)

𝐹 .
.
.
.= (program type)

𝑇 ⇝ 𝑇 (coherent map)

| 𝑇 ⇛ 𝑇 (quantum channel)

Fig. 5. Qunity types.

Γ .
.
.
.= (context)

∅ (empty)

| Γ, 𝑥 : 𝑇 (binding)

dom(∅) .
.= ∅ (dom-none)

dom(Γ, 𝑥 : 𝑇 ) .
.= dom(Γ) ∪ {𝑥} (dom-bind)

Fig. 6. Typing contexts.

𝑒 .
.
.
.= (expression)

() (unit)

| 𝑥 (variable)

| (𝑒,𝑒) (pair)

| ctrl 𝑒


𝑒 ↦→ 𝑒

· · ·
𝑒 ↦→ 𝑒

𝑇 𝑇

(coherent control)

| match 𝑒


𝑒 ↦→ 𝑒

· · ·
𝑒 ↦→ 𝑒

𝑇 𝑇

(decoherent match)

| try 𝑒 catch 𝑒 (error recovery)

| 𝑓 𝑒 (application)

𝑓 .
.
.
.= (program)

u3(𝑟,𝑟,𝑟) (qubit gate)

| left𝑇⊕𝑇 (left tag)

| right𝑇⊕𝑇 (right tag)

| 𝜆𝑒 𝑇↦−→ 𝑒 (abstraction)

| rphase𝑇
{

𝑒 ↦→ 𝑟

else ↦→ 𝑟

}
(relative phase)

| pmatch

𝑒 ↦→ 𝑒

· · ·
𝑒 ↦→ 𝑒

𝑇 𝑇 ′

(symmetric matching)

Fig. 7. BaseQunity syntax.

form to be accepted by the typechecker:

match 𝑥

{
𝑦 ↦→ ctrl 𝑦

{
(expressions that do not erase 𝑦)

}
𝑇 𝑇 ′

· · ·

}
𝑇 𝑇 ′

Here, 𝑦 is passed into the classical context of the ctrl, which is initially typed as mixed by the

T-Match rule, and then as pure through T-Mix rule. Because 𝑦 is in the classical context of the

ctrl expression, it is not required to satisfy the erasure judgment in ctrl since it only applies to

quantum context variables.

The T-Discard rule is also a new addition, as Voichick et al. used the T-MixedAbs program

typing rule to make variable discarding possible. This new change is made to more easily deal with

discarded variables in the match construct.
These rules rely on several additional judgments, namely ortho, and erases. These are listed in

Appendix H and Appendix F.
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Γ ∥ ∅ ⊢ Unit : Unit
T-Unit

Γ, 𝑥 : 𝑇, Γ′ ∥ ∅ ⊢ 𝑥 : 𝑇
T-Cvar

𝑥 ∉ dom(Γ)
Γ ∥ 𝑥 : 𝑇 ⊢ 𝑥 : 𝑇

T-Qvar

Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0 Γ ∥ Δ,Δ1 ⊢ 𝑒1 : 𝑇1
Γ ∥ Δ,Δ0,Δ1 ⊢ (𝑒0,𝑒1) : 𝑇0 ⊗ 𝑇1

T-PurePair

⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′ Γ ∥ Δ ⊢ 𝑒 : 𝑇
Γ ∥ Δ ⊢ 𝑓 𝑒 : 𝑇 ′ T-PureApp

Γ ∥ Δ ⊩ 𝑒 : 𝑇 ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 ∀𝑗 classical(𝑒 𝑗 ) ∀𝑗

erases𝑇 ′ (𝑥 ; 𝑒′
1
, . . . , 𝑒′𝑛) ∀𝑥 ∈ dom(Δ) Γ, Γ𝑗 ∥ Δ,Δ′ ⊢ 𝑒′𝑗 : 𝑇 ′ ∀𝑗

Γ ∥ Δ,Δ′ ⊢ ctrl 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ′

T-Ctrl

Fig. 8. Pure expression typing rules. Here, classical(𝑒) holds if 𝑒 does not include any use of u3 or rphase.

Γ ∥ Δ ⊢ 𝑒 : 𝑇
Γ ∥ Δ ⊩ 𝑒 : 𝑇

T-Mix

Γ ∥ Δ ⊩ 𝑒 : 𝑇

Γ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇
T-Discard

Γ ∥ Δ,Δ0 ⊩ 𝑒0 : 𝑇0 Γ ∥ Δ,Δ1 ⊩ 𝑒1 : 𝑇1

Γ ∥ Δ,Δ0,Δ1 ⊩ (𝑒0,𝑒1) : 𝑇0 ⊗ 𝑇1
T-MixedPair

Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 Γ ∥ Δ1 ⊩ 𝑒1 : 𝑇

Γ ∥ Δ0,Δ1 ⊩ try 𝑒0 catch 𝑒1 : 𝑇
T-Try

⊢ 𝑓 : 𝑇 ⇛ 𝑇 ′ Γ ∥ Δ ⊩ 𝑒 : 𝑇

Γ ∥ Δ ⊩ 𝑓 𝑒 : 𝑇 ′ T-MixedApp

Γ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇 ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 ∀𝑗

classical(𝑒 𝑗 ) ∀𝑗 Γ, Γ𝑗 ∥ Δ,Δ1 ⊩ 𝑒′𝑗 : 𝑇
′ ∀𝑗

Γ ∥ Δ,Δ0,Δ1 ⊩ match 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ′

T-Match

Fig. 9. Mixed expression typing rules.

A.3 Semantics
Qunity’s semantics is defined in terms of operators and superoperators mapping between Hilbert

spaces associated with Qunity types and contexts. These Hilbert spaces are defined as follows:

H(Void) .
.= {0}

H (Unit) .
.= C

H(𝑇0 ⊕ 𝑇1) .
.= H(𝑇0) ⊕ H (𝑇1)

H (𝑇0 ⊗ 𝑇1) .
.= H(𝑇0) ⊗ H (𝑇1)

H (𝑥1 : 𝑇1, . . . , 𝑥𝑛 : 𝑇𝑛) .
.= H(𝑇1) ⊗ · · · ⊗ H (𝑇𝑛)
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⊢ u3(𝑟𝜃,𝑟𝜙,𝑟𝜆) : Bit⇝ Bit

T-Gate

⊢ left𝑇0⊕𝑇1 : 𝑇0 ⇝ 𝑇0 ⊕ 𝑇1
T-Left

⊢ right𝑇0⊕𝑇1 : 𝑇1 ⇝ 𝑇0 ⊕ 𝑇1
T-Right

∅ ∥ Δ ⊢ 𝑒 : 𝑇 ∅ ∥ Δ ⊢ 𝑒′ : 𝑇 ′

⊢ 𝜆𝑒 𝑇↦−→ 𝑒′ : 𝑇 ⇝ 𝑇 ′
T-PureAbs

∅ ∥ Δ ⊢ 𝑒 : 𝑇

⊢ rphase𝑇
{

𝑒 ↦→ 𝑟

else ↦→ 𝑟 ′

}
: 𝑇 ⇝ 𝑇

T-Rphase

ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 ∀𝑗

ortho𝑇 ′
(
𝑒′
1
, . . . , 𝑒′𝑛

)
∅ ∥ Δ 𝑗 ⊢ 𝑒′𝑗 : 𝑇 ′ ∀𝑗

⊢ pmatch

𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ⇝ 𝑇 ′

T-Pmatch

⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′

⊢ 𝑓 : 𝑇 ⇛ 𝑇 ′ T-Channel

∅ ∥ Δ ⊢ 𝑒 : 𝑇 ∅ ∥ Δ ⊩ 𝑒′ : 𝑇 ′

⊢ 𝜆𝑒 𝑇↦−→ 𝑒′ : 𝑇 ⇛ 𝑇 ′
T-MixedAbs

Fig. 10. Program typing rules.

For a type 𝑇 , we define the set of classical expressions of that type as follows:

V(Void) .
.= ∅

V(Unit) .
.= {()}

V(𝑇0 ⊕ 𝑇1) .
.= {left𝑇0⊕𝑇1 𝑣0 | 𝑣0 ∈ V(𝑇0)} ∪ {right𝑇0⊕𝑇1 𝑣1 | 𝑣1 ∈ V(𝑇1)}

V(𝑇0 ⊗ 𝑇1) .
.= {(𝑣0,𝑣1) | 𝑣0 ∈ V(𝑇0), 𝑣1 ∈ V(𝑇1)}

For a context Δ, we have a set of valuations, defined as

V(𝑥1 : 𝑇1, . . . , 𝑥𝑛 : 𝑇𝑛) .
.= {𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛 | 𝑣1 ∈ V(𝑇1), . . . , 𝑣𝑛 ∈ V(𝑇𝑛)}

The spaceH(𝑇 ) is spanned by an orthonormal basis {|𝑣⟩ : 𝑣 ∈ V(𝑇 )}, where we define
|()⟩ .

.= 1��left𝑇0⊕𝑇1 𝑣0〉 .

.= |𝑣0⟩ ⊕ 0��right𝑇0⊕𝑇1 𝑣1〉 .

.= 0 ⊕ |𝑣1⟩
|(𝑣0,𝑣1)⟩ .

.= |𝑣0⟩ ⊗ |𝑣1⟩
The basis states for the space H(Δ) are defined by |𝜏⟩ for valuations 𝜏 ∈ V(Δ).

|𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛⟩ .
.= |𝑣1⟩ ⊗ · · · ⊗ |𝑣𝑛⟩

Now, we can define the denotational semantics of Qunity. For pure expression semantics, we

say that if Γ ∥ Δ ⊢ 𝑒 : 𝑇 and 𝜎 ∈ V(Γ), then J𝜎 : Γ ∥ Δ ⊢ 𝑒 : 𝑇 K ∈ L(H (Δ),H(𝑇 )) defines the pure
semantics of 𝑒 . Here 𝜎 is a valuation of Γ, representing “classical data”. For mixed expression seman-

tics, we have that if Γ ∥Δ ⊩ 𝑒 : 𝑇 and 𝜎 ∈ V(Γ), then J𝜎 : Γ ∥Δ ⊩ 𝑒 : 𝑇 K ∈ L(L(H (Δ)),L(H (𝑇 ))),
defining a superoperator acting on the space of density matrices. For program semantics, we have

that J⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′K ∈ L(H (𝑇 ),H(𝑇 ′)), and J⊢ 𝑓 : 𝑇 ⇛ 𝑇 ′K ∈ L(L(H (𝑇 )),L(H (𝑇 ′))).
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J𝜎 : Γ ∥ ∅ ⊢ () : UnitK |∅⟩ .
.= |()⟩

J𝜎 : Γ ∥ ∅ ⊢ 𝑥 : 𝑇 K |∅⟩ .
.= |𝜎 (𝑥)⟩

J𝜎 : Γ ∥ 𝑥 : 𝑇 ⊢ 𝑥 : 𝑇 K |𝑥 ↦→ 𝑣⟩ .
.= |𝑣⟩

J𝜎 : Γ ∥ Δ,Δ0,Δ1 ⊢ (𝑒0,𝑒1) : 𝑇0 ⊗ 𝑇1K |𝜏, 𝜏0, 𝜏1⟩ .
.= J𝜎 : Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0K |𝜏, 𝜏0⟩

⊗ J𝜎 : Γ ∥ Δ,Δ1 ⊢ 𝑒1 : 𝑇1K |𝜏, 𝜏1⟩

J𝜎 : Γ ∥ Δ,Δ′ ⊢ ctrl 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ′K |𝜏, 𝜏 ′⟩ .
.=

∑︁
𝑣∈V(𝑇 )

⟨𝑣 | JΓ ∥ Δ ⊩ 𝑒 : 𝑇 K (|𝜎, 𝜏⟩⟨𝜎, 𝜏 |) |𝑣⟩

·
𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J∅ : ∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩

· J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝜏, 𝜏 ′⟩
J𝜎 : Γ ∥ Δ ⊢ 𝑓 𝑒 : 𝑇 ′K |𝜏⟩ .

.= J⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′KJ𝜎 : Γ ∥ Δ ⊢ 𝑒 : 𝑇 K |𝜏⟩

Fig. 11. Pure expression semantics.

J⊢ u3(𝑟𝜃,𝑟𝜙,𝑟𝜆) : Bit⇝ BitK |0⟩ .
.= cos(𝑟𝜃/2) |0⟩ + 𝑒𝑖𝑟𝜙 sin(𝑟𝜃/2) |1⟩

J⊢ u3(𝑟𝜃,𝑟𝜙,𝑟𝜆) : Bit⇝ BitK |1⟩ .
.= −𝑒𝑖𝑟𝜆 sin(𝑟𝜃/2) |0⟩ + 𝑒𝑖 (𝑟𝜙+𝑟𝜆 ) cos(𝑟𝜃/2) |1⟩

J⊢ left𝑇0⊕𝑇1 : 𝑇0 ⇝ 𝑇0 ⊕ 𝑇1K |𝑣⟩ .
.=

��left𝑇0⊕𝑇1 𝑣〉
J⊢ right𝑇0⊕𝑇1 : 𝑇1 ⇝ 𝑇0 ⊕ 𝑇1K |𝑣⟩ .

.=
��right𝑇0⊕𝑇1 𝑣〉

J⊢ 𝜆𝑒 𝑇↦−→ 𝑒′ : 𝑇 ⇝ 𝑇 ′K |𝑣⟩ .
.= J∅ : ∅ ∥ Δ ⊢ 𝑒′ : 𝑇 ′KJ∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† |𝑣⟩

J⊢ rphase𝑇
{

𝑒 ↦→ 𝑟

else ↦→ 𝑟 ′

}
: 𝑇 ⇝ 𝑇 K |𝑣⟩ .

.= 𝑒𝑖𝑟 J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 KJ∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† |𝑣⟩

+ 𝑒𝑖𝑟
′
(
I − J∅ ∥ Δ ⊢ 𝑒 : 𝑇 KJ∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K†

)
|𝑣⟩

J⊢ pmatch

𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ⇝ 𝑇 ′K |𝑣⟩ .
.=

𝑛∑︁
𝑗=1

J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒′𝑗 : 𝑇 ′KJ∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩

Fig. 12. Pure program semantics.
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J𝜎 : Γ ∥ Δ ⊩ 𝑒 : 𝑇 K ( |𝜏⟩⟨𝜏 ′ |) .
.= J𝜎 : Γ ∥ Δ ⊢ 𝑒 : 𝑇 K|𝜏⟩⟨𝜏 ′ |J𝜎 : Γ ∥ Δ ⊢ 𝑒 : 𝑇 K†

J𝜎 : Γ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇 K (𝜌 ⊗ 𝜌0) .
.= tr(𝜌0)J𝜎 : Γ ∥ Δ ⊩ 𝑒 : 𝑇 K(𝜌)

J𝜎 : Γ ∥ Δ,Δ0,Δ1 ⊩ (𝑒0,𝑒1) : 𝑇0 ⊗ 𝑇1K
(
|𝜏, 𝜏0, 𝜏1⟩⟨𝜏 ′, 𝜏 ′0, 𝜏 ′1 |

)
.
.= J𝜎 : Γ ∥ Δ,Δ0 ⊩ 𝑒0 : 𝑇0K

(
|𝜏, 𝜏0⟩⟨𝜏 ′, 𝜏 ′0 |

)
⊗ J𝜎 : Γ ∥ Δ,Δ1 ⊩ 𝑒1 : 𝑇1K

(
|𝜏, 𝜏1⟩⟨𝜏 ′, 𝜏 ′1 |

)
J𝜎 : Γ ∥ Δ0,Δ1 ⊩ try 𝑒0 catch 𝑒1 : 𝑇 K (𝜌0 ⊗ 𝜌1) .

.= tr(𝜌1)J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K (𝜌0)
+ (tr(𝜌0) − tr(J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K (𝜌0)))
· J𝜎 : Γ ∥ Δ1 ⊩ 𝑒1 : 𝑇 K (𝜌1)

J𝜎 : Γ ∥ Δ,Δ0,Δ1 ⊩ match 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ′K
(
|𝜏, 𝜏0, 𝜏1⟩

〈
𝜏 ′, 𝜏 ′

0
, 𝜏 ′

1

��) .
.=

=
∑︁

𝑣∈V(𝑇 )
⟨𝑣 |

(
J𝜎 : Γ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇 K

(
|𝜏, 𝜏0⟩

〈
𝜏 ′, 𝜏 ′

0

��) ) |𝑣⟩ ·
·

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J∅ : ∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩ ·

·J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ1 ⊩ 𝑒′𝑗 : 𝑇
′K

(
|𝜏, 𝜏1⟩

〈
𝜏 ′, 𝜏 ′

1

��)
Fig. 13. Mixed expression semantics.

J⊢ 𝑓 : 𝑇 ⇛ 𝑇 ′K( |𝑣⟩⟨𝑣 ′ |) .
.= J⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′K|𝑣⟩⟨𝑣 ′ |J⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′K†

J⊢ 𝜆𝑒 𝑇↦−→ 𝑒′ : 𝑇 ⇛ 𝑇 ′K( |𝑣⟩⟨𝑣 ′ |) .
.=

J∅ : ∅ ∥ Δ ⊩ 𝑒′ : 𝑇 ′K
(
J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† |𝑣⟩⟨𝑣 ′ |J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K

)
Fig. 14. Mixed program semantics.
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B Grammar of the Surface Syntax
A type name ⟨tname⟩ consists of a capital letter followed by zero or more alphanumeric characters,

underscores, or apostrophes. An expression name ⟨ename⟩ consists of a dollar sign $ followed

by one or more alphanumeric characters, underscores, or apostrophes. Program names ⟨fname⟩,
real names ⟨rname⟩, and type variables ⟨tvar⟩ are similar, using @, #, and ’ respectively. Quantum
variables ⟨qvar⟩ must start with a lowercase letter or underscore. Real constants ⟨const⟩ are integers
(one or more digits possibly preceded by a minus sign).

⟨qfile⟩ ::= ⟨def ⟩* ⟨e⟩

⟨def ⟩ ::= type ⟨tname⟩ ⟨sig⟩ := ⟨t⟩ end
| type ⟨tname⟩ ⟨sig⟩ := (| ⟨tname⟩ | ⟨fname⟩ of ⟨t⟩)+ end
| def ⟨ename⟩ ⟨sig⟩ : ⟨t⟩ := ⟨e⟩ end
| def ⟨fname⟩ ⟨sig⟩ : ⟨t⟩ -> ⟨t⟩ := ⟨f ⟩ end
| def ⟨rname⟩ ⟨sig⟩ := ⟨r⟩ end

⟨sig⟩ ::= { ⟨param⟩ (, ⟨param⟩)* }

⟨param⟩ ::= ⟨tvar⟩
| ⟨tname⟩ : ⟨t⟩
| ⟨fname⟩ : ⟨t⟩ -> ⟨t⟩
| ⟨rname⟩

⟨ge⟩ ::= ⟨t⟩ | ⟨e⟩ | ⟨f ⟩ | ⟨r⟩

⟨t⟩ ::= Void
| Unit
| ⟨t⟩ * ⟨t⟩
| ⟨tvar⟩
| ⟨tname⟩ ({ ⟨ge⟩, (, ⟨ge⟩)* })?
| ( ⟨t⟩ )
| if ⟨be⟩ then ⟨t⟩ else ⟨t⟩ endif

⟨e⟩ ::= ()
| ⟨qvar⟩
| ( ⟨e⟩ , ⟨e⟩ )
| ctrl ⟨e⟩ [ (⟨e⟩ -> ⟨e⟩ ;)* (else -> ⟨e⟩)? ]
| match ⟨e⟩ [ (⟨e⟩ -> ⟨e⟩ ;)* (else -> ⟨e⟩)? ]
| try ⟨e⟩ catch ⟨e⟩
| ⟨f ⟩ ( ⟨e⟩ )
| ⟨e⟩ |> ⟨f ⟩
| let ⟨e⟩ = ⟨e⟩ in ⟨e⟩
| ⟨ename⟩ ({ ⟨ge⟩, (, ⟨ge⟩)* })?
| ( ⟨e⟩ )
| if ⟨be⟩ then ⟨e⟩ else ⟨e⟩ endif

⟨f ⟩ ::= u3 { ⟨r⟩ , ⟨r⟩ , ⟨r⟩ }
| lambda ⟨e⟩ -> ⟨e⟩
| gphase { ⟨r⟩ }
| rphase { ⟨e⟩ , ⟨r⟩ , ⟨r⟩ }
| pmatch [ (⟨e⟩ -> ⟨e⟩ ;)* ]
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| ⟨fname⟩ ({ ⟨ge⟩, (, ⟨ge⟩)* })?
| ( ⟨f ⟩ )
| if ⟨be⟩ then ⟨f ⟩ else ⟨f ⟩ endif

⟨r⟩ ::= pi
| euler
| ⟨const⟩
| ⟨r⟩ + ⟨r⟩
| ⟨r⟩ - ⟨r⟩
| ⟨r⟩ * ⟨r⟩
| ⟨r⟩ / ⟨r⟩
| ⟨r⟩ ^ ⟨r⟩
| ⟨r⟩ % ⟨r⟩
| sin ( ⟨r⟩ )
| cos ( ⟨r⟩ )
| tan ( ⟨r⟩ )
| arcsin ( ⟨r⟩ )
| arccos ( ⟨r⟩ )
| arctan ( ⟨r⟩ )
| exp ( ⟨r⟩ )
| ln ( ⟨r⟩ )
| log2 ( ⟨r⟩ )
| sqrt ( ⟨r⟩ )
| ceil ( ⟨r⟩ )
| floor ( ⟨r⟩ )
| ⟨rname⟩ ({ ⟨ge⟩, (, ⟨ge⟩)* })?
| ( ⟨r⟩ )
| if ⟨be⟩ then ⟨r⟩ else ⟨r⟩ endif

⟨be⟩ ::= ! ⟨be⟩
| ⟨be⟩ && ⟨be⟩
| ⟨be⟩ || ⟨be⟩
| ⟨r⟩ ⟨cmp⟩ ⟨r⟩
| ( ⟨be⟩ )

⟨cmp⟩ ::= = | != | <= | < | >= | >
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C Comparison of Control Flow Constructs

ctrl match pmatch
What kind of

semantics?

Pure expression Mixed expression Pure program

Restrictions • LHS must satisfy

orthogonality

• LHS must be pure

• RHS must be pure

• RHS must satisfy

erasure judgment

for scrutinee

quantum context

• LHS must be

classical

• LHS must satisfy

orthogonality

• LHS must be pure

• LHS must be

classical

• LHS must satisfy

orthogonality

• RHS must satisfy

orthogonality

• LHS must be pure

• RHS must be pure

• Each pair of

matching

expressions must

share the same

(quantum)

context

• Since it is a

program, it is

typed without

context and does

not contain a

scrutinee directly

Benefits • Scrutinee can be

mixed while the

entire expression

is still pure

• Can use classical

context variables

originating from

an outer ctrl or

match in an

unrestricted way

• Can be used to

apply relative

phases

(conditional

global phases)

• RHS can be mixed

• Erasure judgment

is not required

• Can use classical

context variables

originating from

an outer ctrl or

match in an

unrestricted way

• No “unavoidable

source of error”

when scrutinee is

not classical

• LHS and RHS can

be in an arbitrary

basis

• Erasure judgment

is not required

• Can be used to

apply relative

phases

(conditional

global phases)

Can be used

in a pattern /

has an adjoint

Yes No Yes

Can be used in

the LHS of a

ctrl or match

No No No

Can be used

in the RHS of

a ctrl

Yes No Yes
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Can be used

the RHS of a

match

Yes Yes Yes

Can be used

in the LHS or

RHS of a

pmatch

Yes, if the isometry

judgment holds

No Yes, if the isometry

judgment holds

Can contain a

mixed

expression in

the scrutinee

Yes Yes N/A

Can contain a

mixed

expression on

the LHS

No No No

Can contain a

mixed

expression on

the RHS

No Yes No

Applying a

global phase

to a RHS

expression

makes a

semantic

difference

Yes No Yes
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When to use? • You want to

control

something on a

subroutine which

may involve

measurement/de-

coherence, but

you want your

entire expression

to be reversible

• You want to

conditionally

apply a global

phase depending

on the result of a

mixed expression

• You are able to

keep the

scrutinee

variables on the

RHS in

satisfaction of the

erasure judgment

• You do not care

whether your

expression is

reversible

• You want to

conditionally

apply some

expressions that

involve

measurement/de-

coherence

• You want

something that

most closely

corresponds to a

match in classical

programming

languages

• What you want to

do can be

accomplished by

measuring the

outcome of the

input expression

and then

evaluating the

appropriate RHS

expression

• You want to avoid

the erasure

requirement

• You want to

reversibly map

between two

different bases

• The LHS patterns

are not in the

classical basis.

• You want to avoid

the erasure

requirement

• You do not need

any outside

variables
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D Benchmark Test Programs
For these examples, the quantum registers in all circuits were initialized to a superposition state to

prevent classical propagation optimizations from taking place. Not all of the examples are useful

quantum algorithms, but they serve to evaluate the performance of the Qunity compiler.

D.1 Phase Conditioned on AND of 5Qubits
Qunity implementation:

def @multi_and{#n} : Array{#n , Bit} → Bit :=

if #n = 0 then

lambda () → $1

else

lambda (x0, x1) → @and(x0, @multi_and{#n - 1}(x1))

endif

end

$repeated{5, Bit , $plus} ▷ lambda x → ctrl @multi_and {5}(x) [

$0 → x;

$1 → x ▷ gphase{pi}

]

Fig. 15. Compiled circuit for phase conditioned on AND of 5 qubits.

Qiskit implementation:

circuit = QuantumCircuit (5, 5)

circuit.h(range (5))

circuit.mcp(math.pi, [0, 1, 2, 3], [4])

circuit.measure(range (5), range (5))
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D.2 Quantum Fourier Transform (5Qubits)
Qunity implementation:

def @couple{#k} : Bit * Bit → Bit * Bit :=

lambda (x0, x1) → (x1, x0) ▷ rphase {( $1 , $1), 2 * pi / (2 ^

#k), 0}

end

def @rotations{#n} : Array{#n , Bit} → Array{#n , Bit} :=

if #n <= 0 then

@id{Unit}

else if #n = 1 then

lambda (x, ()) → (@had(x), ())

else

lambda (x0, x) →
let (x0, (y0 ', y)) = (x0, @rotations{#n - 1}(x)) in

let ((y0, y1), y) = (@couple{#n }(x0, y0 '), y) in

(y0, (y1, y))

endif

endif

end

def @qft{#n} : Array{#n , Bit} → Array{#n , Bit} :=

if #n <= 0 then

@id{Unit}

else

lambda x →
let (x0, x') = @rotations{#n }(x) in

(x0, @qft{#n - 1}(x'))

endif

end

@qft {5}( $0 , ($plus , ($plus , ($0 , ($0 , ()))))) ▷ @reverse{5, Bit}

Qiskit implementation:

from qiskit.circuit.library import QFT

circuit = QuantumCircuit (5, 5)

circuit.h([1, 2])

circuit.append(QFT(5), [0, 1, 2, 3, 4])

circuit.measure ([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
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Fig. 16. Compiled circuit for theQuantum Fourier Transform.

D.3 Phase Estimation Example (5Qubits)
Qunity implementation:

def @apply_phase{#n , #p} : Num{#n} → Num{#n} :=

if #n = 0 then

@id{Unit}

else

lambda (x0, x') →
(ctrl x0 [

$0 → x0;

$1 → x0 ▷ gphase {2 * pi * #p}

], @apply_phase{#n - 1, 2 * #p }(x'))

endif

end

def $phase_estimation{#n , #p} : Num{#n} :=

$repeated{#n , Bit , $plus}

▷ @apply_phase{#n , #p}

▷ @adjoint{Num{#n}, Num{#n}, @qft{#n }}

▷ @reverse{#n , Bit}

end

$phase_estimation {5, 1/3}

Fig. 17. Compiled circuit for phase estimation.
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Qiskit implementation:

from qiskit.circuit.library import PhaseEstimation ,

GlobalPhaseGate

circuit = QuantumCircuit (5, 5)

circuit.append(PhaseEstimation (5, GlobalPhaseGate (2 * math.pi /

3)), range (5))

circuit.measure(range (5), range (5))

D.4 Order Finding
For the Qunity implementation, see Section 3.1.

Fig. 18. Compiled circuit for order finding.

D.5 Reversible CDKM Adder (5 Bits)
Qunity implementation:

def @cdkm_maj : Bit * Bit * Bit → Bit * Bit * Bit :=

lambda ((a, b), c) → ctrl c [

$0 → (c, (a, b));

$1 → (c, (@not(a), @not(b)))

] ▷ lambda (c, (a, b)) → ctrl (a, b) [

($1 , $1) → ((a, b), @not(c));

else → ((a, b), c);

]

end

def @cdkm_uma : Bit * Bit * Bit → Bit * Bit * Bit :=

lambda ((a, b), c) → ctrl (a, b) [

($1 , $1) → ((a, b), @not(c));

else → ((a, b), c);

] ▷ lambda ((a, b), c) →
(a, (b, (c, ()))) ▷ @cnot{3, 2, 0} ▷ @cnot{3, 0, 1} ▷
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lambda (a, (b, (c, ()))) → ((a, b), c)

end

def @rev_adder_helper{#n} : Num{#n} * Num{#n} * Bit → Num{#n} *

Num{#n} * Bit :=

if #n <= 0 then

@id{Num{#n} * Num{#n} * Bit}

else

lambda (((a0, a1), (b0, b1)), c) →
let (((ca, ba), c'), (a1, b1)) =

(@cdkm_maj ((c, b0), a0), (a1, b1)) in

let ((ca, ba), ((a1, s1), c'')) =

((ca, ba), @rev_adder_helper{#n - 1}((a1, b1), c')) in

let ((a1, s1), ((c, s0), a0)) =

((a1, s1), @cdkm_uma ((ca, ba), c'')) in

(((a0, a1), (s0, s1)), c)

endif

end

def @rev_adder{#n} : Num{#n} * Num{#n} → Num{#n} * Num{#n} :=

lambda (a, b) → ((a, b), $0) ▷ @rev_adder_helper{#n} ▷
lambda (x, $0) → x

end

@rev_adder {5}($repeated{5, Bit , $plus}, $repeated{5, Bit , $plus})

Fig. 19. Compiled circuit for the reversible CDKM adder.

Qiskit implementation:

from qiskit.circuit.library import CDKMRippleCarryAdder

circuit = QuantumCircuit (11, 10)
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circuit.h(range (10))

circuit.append(CDKMRippleCarryAdder (5, kind="fixed"), range (11))

circuit.measure(range (10), range (10))

D.6 Grover (5-Bit Match Oracle, 1 Iteration)
Qunity implementation (for the definition of $grover, see Section 3.2):

def #n := 5 end

def $answer : Num{#n} := ($0 , ($1 , ($1 , ($0 , ($0 , ()))))) end

def @f : Num{#n} → Bit :=

lambda x → ctrl x [

@answer → (x, $1);

else → (x, $0)

] ▷ @snd{Num{#n}, Bit}

end

$grover{Num{#n}, $repeated{#n , Bit , $plus}, @f, 1}

Fig. 20. Compiled circuit for Grover’s algorithm with a simple match oracle.

Qiskit implementation:

circuit = QuantumCircuit (6, 5)

circuit.x(5)

circuit.h(range (6))

circuit.mcx([0, 1, 2, 3, 4], 5, ctrl_state="01100")

circuit.h(range (5))

circuit.mcx([0, 1, 2, 3, 4], 5, ctrl_state="00000")

circuit.h(range (5))

circuit.measure ([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
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D.7 Grover (List Sum Oracle)
Qunity implementation (for the definition of $grover, see Section 3.2):

def $equal_superpos_list{#n} : List{#n , Bit} :=

if #n = 0 then

$ListEmpty {0, Bit}

else

$0

▷ u3{2 * arccos(sqrt(1 / (2 ^ (#n + 1) - 1))), 0, 0}

▷ pmatch [

$0 → $ListEmpty {#n , Bit};

$1 → @ListCons {#n , Bit}($plus ,

$equal_superpos_list{#n - 1})

]

endif

end

def @is_odd_sum{#n} : List{#n , Bit} → Bit :=

if #n = 0 then

lambda l → $0

else

lambda l → match l [

$ListEmpty {#n , Bit} → $0;

@ListCons {#n , Bit}( $0 , l') → @is_odd_sum{#n - 1}(l');

@ListCons {#n , Bit}( $1 , l') → @not(@is_odd_sum{#n - 1}(l'))

]

endif

end

def #n := 2 end

$grover{List{#n , Bit}, $equal_superpos_list{#n},

@is_odd_sum{#n}, 1}

Fig. 21. Compiled circuit for Grover’s algorithm with a “list sum” oracle.
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Qiskit implementation:

circuit = QuantumCircuit (5, 4)

circuit.x(4)

circuit.h(4)

circuit.ry(2 * math.acos(math.sqrt(1 / (2**3 - 1))), 0)

circuit.ch(0, 1)

circuit.cry(2 * math.acos(math.sqrt(1 / (2**2 - 1))), 0, 2)

circuit.ch(2, 3)

circuit.cx(1, 4)

circuit.cx(3, 4)

circuit.ch(2, 3)

circuit.cry(-2 * math.acos(math.sqrt(1 / (2**2 - 1))), 0, 2)

circuit.ch(0, 1)

circuit.ry(-2 * math.acos(math.sqrt(1 / (2**3 - 1))), 0)

circuit.mcx([0, 1, 2, 3], 4, ctrl_state="0000")

circuit.ry(2 * math.acos(math.sqrt(1 / (2**3 - 1))), 0)

circuit.ch(0, 1)

circuit.cry(2 * math.acos(math.sqrt(1 / (2**2 - 1))), 0, 2)

circuit.ch(2, 3)

circuit.measure ([0, 1, 2, 3], [0, 1, 2, 3])

E Circuit-Style Programming
While Qunity allows for programming on a much higher level of abstraction than the quantum

circuit model, it is possible to work with Qunity as if it was a low-level circuit language, by defining

the following constructs:

def @gate_1q{#n , #i , @f : Bit → Bit} : Array{#n , Bit} → Array{

#n , Bit} :=

if #i <= 0 then

lambda (x, y) → (@f(x), y)

else

lambda (x, y) → (x, @gate_1q{#n - 1, #i - 1, @f}(y))

endif

end

def @controlled_1q{#n , #i , #j , @f : Bit → Bit} : Array{#n , Bit}

→ Array{#n , Bit} :=

if #i > #j then

lambda x → x

▷ @reverse{#n , Bit}

▷ @controlled_1q{#n , #n - 1 - #i , #n - 1 - #j , @f}

▷ @reverse{#n , Bit}

else

if #i <= 0 then
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lambda (x, y) → ctrl x [

$0 → (x, y);

$1 → (x, @gate_1q{#n - 1, #j - 1, @f}(y))

]

else

lambda (x, y) → (x, @cnot{#n - 1, #i - 1, #j - 1}(y))

endif

endif

end

def @cnot{#n , #i , #j} : Array{#n , Bit} → Array{#n , Bit} :=

@controlled_1q{#n , #i , #j , @not}

end

This allows us to use a Qunity array as a quantum register and apply gates to it, accessing qubits

by index. Since we have defined single-qubit gates and CNOT in this way, this can in principle be

used to represent any quantum computation. If performance is critical, a Qunity programmer may

switch to writing in circuit style for some subroutines, since these constructs compile efficiently to

the corresponding low-level gates.

F The Orthogonality and Spanning Judgments
We generalize the orthogonality judgment (used for typing Qunity’s control flow constructs), as well

as the spanning judgment (now used for the isometry judgment in Appendix G). The orthogonality

judgment in Figure 22 allows the Qunity typechecker to statically check whether a given set of

expressions corresponds to a set of orthogonal subspaces in the Hilbert space corresponding to

their type. The spanning judgment in Figure 23 corresponds to checking that the expressions are

orthogonal and that the direct sum of their corresponding subspaces is the whole Hilbert space.

Note that both of these judgments correspond to sufficient but not necessary conditions: anything

that they recognize as orthogonal (spanning) must be orthogonal (spanning), but the converse is

not true.

The main modifications are the O-IsoApp rule allowing the application of arbitrary isometric

programs to all expressions in the set (which maintains orthogonality), and the S-UnApp rule

allowing the application of arbitrary unitary programs to all expressions in the set (which maintains

the spanning property). This depends on the unitary judgment, which is itself defined in terms of

the isometry judgment (Appendix G) as follows:

iso(𝑓 ) dim(𝑇 ) = dim(𝑇 ′)
un(⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′)

U-Prog

That is, if a Qunity program has isometric semantics and maps between two types whose associated

Hilbert spaces have the same dimension, it must have unitary semantics.
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orthoVoid ()
O-Void

orthoUnit
(
()

) O-Unit

ortho𝑇

(
𝑥
) O-Var

ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
iso(⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′)

ortho𝑇 ′
(
𝑓 𝑒1, . . . , 𝑓 𝑒𝑛

) O-IsoApp

ortho𝑇0

(
𝑒1, . . . , 𝑒𝑛

)
ortho𝑇1

(
𝑒′
1
, . . . , 𝑒′𝑛′

)
ortho𝑇0⊕𝑇1

(
left𝑇0⊕𝑇1𝑒1, . . . , left𝑇0⊕𝑇1𝑒𝑛,

right𝑇0⊕𝑇1𝑒
′
1
, . . . , right𝑇0⊕𝑇1𝑒

′
𝑛′

) O-Sum

ortho𝑇0

(
𝑒1, . . . , 𝑒𝑚

)
ortho𝑇1

(
𝑒′𝑗,1, . . . , 𝑒

′
𝑗,𝑛 𝑗

)
∀𝑗

FV(𝑒 𝑗 ) ∩
⋃𝑛𝑚

𝑘=1
FV(𝑒′

𝑗,𝑘
) = ∅ ∀𝑗

ortho𝑇0⊗𝑇1
©­­«
(𝑒1,𝑒

′
1,1), . . . , (𝑒1,𝑒

′
1,𝑛1

),

. . . ,

(𝑒𝑚,𝑒
′
𝑚,1), . . . , (𝑒𝑚,𝑒

′
𝑚,𝑛𝑚

)

ª®®¬
O-Pair

ortho𝑇

(
𝑒′
1
, . . . , 𝑒′𝑚

)
[𝑒1, . . . , 𝑒𝑛] is a subsequence of [𝑒′1, . . . , 𝑒′𝑚]
ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

) O-Sub

Fig. 22. Orthogonality inference rules, modified from the original spanning rules to allow for arbitrary

isometry application. Here, FV(𝑒) means the set of free variables in 𝑒 (this does not include variables in

patterns).

spanningVoid ()
S-Void

spanningUnit

(
Unit

) S-Unit

spanning𝑇

(
𝑥
) S-Var

spanning𝑇

(
𝑒1, . . . , 𝑒𝑛

)
un(⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′)

spanning𝑇 ′
(
𝑓 𝑒1, . . . , 𝑓 𝑒𝑛

) S-UnApp

spanning𝑇0

(
𝑒1, . . . , 𝑒𝑛

)
spanning𝑇1

(
𝑒′
1
, . . . , 𝑒′𝑛′

)
spanning𝑇0⊕𝑇1

(
left𝑇0⊕𝑇1𝑒1, . . . , left𝑇0⊕𝑇1𝑒𝑛,

right𝑇0⊕𝑇1𝑒
′
1
, . . . , right𝑇0⊕𝑇1𝑒

′
𝑛′

) S-Sum

spanning𝑇0

(
𝑒1, . . . , 𝑒𝑚

)
spanning𝑇1

(
𝑒′𝑗,1, . . . , 𝑒

′
𝑗,𝑛 𝑗

)
∀𝑗

FV(𝑒 𝑗 ) ∩
⋃𝑛𝑚

𝑘=1
FV(𝑒′

𝑗,𝑘
) = ∅ ∀𝑗

spanning𝑇0⊗𝑇1
©­­«
(𝑒1,𝑒

′
1,1), . . . , (𝑒1,𝑒

′
1,𝑛1

),

. . . ,

(𝑒𝑚,𝑒
′
𝑚,1), . . . , (𝑒𝑚,𝑒

′
𝑚,𝑛𝑚

)

ª®®¬
S-Pair

Fig. 23. Spanning inference rules, extended to allow the application of arbitrary unitary programs.
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Lemma F.1. Suppose that ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
holds. Take any 𝑒𝑖 , 𝑒 𝑗 with 𝑖 ≠ 𝑗 . Let

J𝑒𝑖K = J∅ : ∅ ∥ Δ𝑖 ⊢ 𝑒𝑖 : 𝑇 K : H(Δ𝑖 ) → H(𝑇 )
and similarly for J𝑒 𝑗 K. Then, the images of the operators J𝑒𝑖K and J𝑒 𝑗 K as subspaces of H(𝑇 ) are
orthogonal.

Proof. We prove this by induction on the rule used to prove the orthogonality judgment.

O-Void, O-Unit, O-Var: The statement is vacuously true in these cases, since the sets contain

less than two expressions.

O-IsoApp: In this case, we use Lemma G.1 to claim that the semantics J⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′K is isometric.

Since an isometric operator applied to orthogonal vectors preserves their orthogonality, it must be

that J𝑓 𝑒𝑖K and J𝑓 𝑒 𝑗 K are orthogonal subspaces of 𝑇 ′
.

O-Sum: If the two expressions are both “left” or both “right”, then the claim follows by induction,

since we assume that both subsequences form orthogonal sets and the left and right injections are

isometric. If one is “left” and the other is “right,” the image of H(𝑇0) under left and the image of

H(𝑇1) under right are orthogonal subspaces inH(𝑇0 ⊕ 𝑇1) = H(𝑇0) ⊕ H (𝑇1).
O-Pair:

The O-Pair rule assumes that for all 𝑗 , we have

FV(𝑒 𝑗 ) ∩
𝑛𝑚⋃
𝑘=1

FV(𝑒′
𝑗,𝑘
) = ∅,

that is, 𝑒 𝑗 and 𝑒′
𝑗,𝑘

do not share any free variables. Thus, in the typing rule T-PurePair for the

expression (𝑒 𝑗 , 𝑒′𝑗,𝑘 ) we must have Δ = ∅, and so substituting quantum contexts Δ 𝑗 and Δ′
𝑗,𝑘

for

Δ0,Δ1, the semantics (omitting empty classical contexts for brevity) is given by

JΔ 𝑗 ,Δ
′
𝑗,𝑘

⊢ (𝑒 𝑗 , 𝑒′𝑗,𝑘 ) : 𝑇0 ⊗ 𝑇1K |𝜏0, 𝜏1⟩ = JΔ 𝑗 , ⊢ 𝑒 𝑗 : 𝑇0K |𝜏0⟩ ⊗ JΔ′
𝑗,𝑘
, ⊢ 𝑒′𝑗 : 𝑇1K |𝜏1⟩ .

Consider two expressions (𝑒𝑖 , 𝑒′𝑖,𝑘 ) and (𝑒 𝑗 , 𝑒′𝑗,𝑙 ). We then have that the images are

J(𝑒𝑖 , 𝑒′𝑖,𝑘 )K(H (Δ𝑖 ,Δ
′
𝑖,𝑘
)) = J𝑒𝑖K(H (Δ𝑖 )) ⊗ J𝑒′

𝑖,𝑘
K(H (Δ′

𝑖,𝑘
))

J(𝑒 𝑗 , 𝑒′𝑗,𝑙 )K(H (Δ 𝑗 ,Δ
′
𝑗,𝑙
)) = J𝑒 𝑗 K(H (Δ 𝑗 )) ⊗ J𝑒′

𝑗,𝑙
K(H (Δ′

𝑗,𝑙
)) .

In the case where 𝑖 ≠ 𝑗 , we have that J𝑒𝑖K(H (Δ𝑖 )) and J𝑒 𝑗 K(H (Δ 𝑗 )) are orthogonal subspaces
by the assumption that ortho𝑇0

(
𝑒1, . . . , 𝑒𝑚

)
. If 𝑖 = 𝑗 , then J𝑒′

𝑖,𝑘
K(H (Δ′

𝑖,𝑘
)) and J𝑒′

𝑗,𝑙
K(H (Δ′

𝑗,𝑙
)) are

orthogonal subspaces by the assumption that ortho𝑇1

(
𝑒′𝑗,1, . . . , 𝑒

′
𝑗,𝑛 𝑗

)
. So, in all cases, the claim holds.

O-Sub: The claim holds trivially in this case, since any subsequence of a sequence of orthogonal

expressions is orthogonal. This completes the proof.

□

Lemma F.2. Suppose that spanning𝑇

(
𝑒1, . . . , 𝑒𝑛

)
holds. Then, ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
holds and

𝑛⊕
𝑗=1

J𝑒 𝑗 K(H (Δ 𝑗 )) � H(𝑇 ) .

Proof. The first claim is clear, since each typing rule for the spanning judgment is stronger

than the corresponding rule for the orthogonality judgment. Now, we prove the spanning property

by induction:

S-Void: The claim holds trivially since H(Void) = {0}, which we consider to be the direct sum

of an empty set of spaces.

S-Unit: The image of J()K is span{|()⟩} = C = H(Unit).
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S-Var: Since J𝑥 : 𝑇 K maps every |𝑥 ↦→ 𝑣⟩ ∈ H (Δ) for 𝑣 ∈ V(𝑇 ) to |𝑣⟩ ∈ H (𝑇 ), it is clear by
definition of the Hilbert spaces that it implements an isomorphismH(Δ) → H(𝑇 ), and thus its

image is all of H(𝑇 ).
S-UnApp: By the unitary rule, we must have that 𝑇 and 𝑇 ′

have the same dimension and J𝑓 K is
an isometry (and thus a unitary). Thus, it sends orthogonal vectors in H(𝑇 ) to orthogonal vectors

in H(𝑇 ′). Since the dimensions are equal and the images of J𝑒1K, . . . , J𝑒𝑛K contain a basis of H(𝑇 ),
we must have that the images of J𝑓 𝑒1K, . . . , J𝑓 𝑒𝑛K contain a basis of H(𝑇 ′) and so their direct sum

is all ofH(𝑇 ′). Note that this depends on the correctness of the isometry judgment (G), which in

turn depends on the spanning judgment, but this is not an issue since we are really performing

simultaneous induction.

S-Sum: By assumption, we have spanning𝑇0

(
𝑒1, . . . , 𝑒𝑛

)
and spanning𝑇1

(
𝑒′
1
, . . . , 𝑒′𝑛′

)
, so the direct

sum of the images contains all of{��left𝑇0⊕𝑇1 𝑣0〉 | 𝑣0 ∈ V(𝑇0)} ∪ {
��right𝑇0⊕𝑇1 𝑣1〉 | 𝑣1 ∈ V(𝑇1)

}
,

which forms a basis for H(𝑇0 ⊕ 𝑇1).
S-Pair: By assumption, we have spanning𝑇0

(
𝑒1, . . . , 𝑒𝑚

)
, which means that

𝑚⊕
𝑗=1

J𝑒 𝑗 K(H (Δ 𝑗 )) = H(𝑇0).

And, since for each 𝑗 , we have spanning𝑇0

(
𝑒′𝑗,1, . . . , 𝑒

′
𝑗,𝑛 𝑗

)
, we also have

𝑛 𝑗⊕
𝑘=1

J𝑒′
𝑗,𝑘

K(H (Δ′
𝑗,𝑘
)) = H(𝑇1),

so it must be the case that

𝑚⊕
𝑗=1

𝑛 𝑗⊕
𝑘=1

J(𝑒 𝑗 , 𝑒′𝑗,𝑘 )K(H (Δ 𝑗 ,Δ
′
𝑗,𝑘
))

=

𝑚⊕
𝑗=1

𝑛 𝑗⊕
𝑘=1

span{J(𝑒 𝑗 , 𝑒′𝑗,𝑘 )K |𝜏0, 𝜏1⟩ | 𝜏0 ∈ V(Δ 𝑗 ), 𝜏1 ∈ V(Δ′
𝑗,𝑘
)} =

=

𝑚⊕
𝑗=1

𝑛 𝑗⊕
𝑘=1

span{J𝑒 𝑗 K |𝜏0⟩ ⊗ J𝑒′
𝑗,𝑘

K |𝜏1⟩ | 𝜏0 ∈ V(Δ 𝑗 ), 𝜏1 ∈ V(Δ′
𝑗,𝑘
)} =

=

𝑚⊕
𝑗=1

J𝑒 𝑗 K(H (Δ 𝑗 )) ⊗
𝑛 𝑗⊕
𝑘=1

J𝑒′
𝑗,𝑘

K(H (Δ′
𝑗,𝑘
)) = H(𝑇0) ⊗ H (𝑇1) = H(𝑇0 ⊗ 𝑇1).

Note that in the first equality above we used the assumption that the sets of free variables are

disjoint to decompose the context spaces as tensor products. This completes the proof. □

G The Isometry Judgment
The isometry judgment in Figure 24 allows the Qunity typechecker to determine if the given

expression or program is guaranteed to have isometric (norm-preserving) semantics, and thus

never raise an error. This information can be used by the compiler to perform certain optimizations,

such as deleting certain flag qubits that are known to always be in the |0⟩ state due to the fact that

the corresponding Qunity expression is isometric.
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iso(())
I-Unit

iso(𝑥)
I-Var

iso(𝑒0) iso(𝑒1)
iso((𝑒0,𝑒1))

I-Pair

classical(𝑒) iso(𝑒) spanning𝑇

(
𝑒1, . . . , 𝑒𝑛

)
iso(𝑒′𝑗 ) ∀𝑗

iso

©­­«ctrl 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

ª®®¬
I-Ctrl

classical(𝑒) iso(𝑒) spanning𝑇

(
𝑒1, . . . , 𝑒𝑛

)
iso(𝑒′𝑗 ) ∀𝑗

iso

©­­«match 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

ª®®¬
I-Match

iso(𝑒0)
iso(try 𝑒0 catch 𝑒1)

I-Try

iso(𝑒0)
iso(try 𝑒0 catch 𝑒1)

I-Catch

iso(𝑓 ) iso(𝑒)
iso(𝑓 𝑒)

I-App

iso(u3(𝑟𝜃,𝑟𝜙,𝑟𝜆))
I-Gate

iso(left𝑇0⊕𝑇1 )
I-Left

iso(right𝑇0⊕𝑇1 )
I-Right

spanning𝑇

(
𝑒
)

iso(𝑒′)

iso(𝜆𝑒 𝑇↦−→ 𝑒′)
I-Abs

iso(𝑒)

iso

(
rphase𝑇

{
𝑒 ↦→ 𝑟

else ↦→ 𝑟 ′

}) I-Rphase

spanning𝑇

(
𝑒1, . . . , 𝑒𝑛

)
iso(𝑒′

1
) · · · iso(𝑒′𝑛)

iso

©­­«pmatch

𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

ª®®¬
I-Pmatch

Fig. 24. Isometry inference rules.

Lemma G.1.

• If Γ ∥ Δ ⊢ 𝑒 : 𝑇 holds and iso(𝑒), then for all |𝜓 ⟩ ∈ H (Δ), we have

JΓ ∥ Δ ⊢ 𝑒 : 𝑇 K |𝜓 ⟩


 = ∥|𝜓 ⟩∥ .

• If Γ ∥ Δ ⊩ 𝑒 : 𝑇 holds and iso(𝑒), then for all 𝜌 ∈ L(H (Δ)), we have

tr JΓ ∥ Δ ⊩ 𝑒 : 𝑇 K(𝜌) = tr(𝜌).

• If ⊢ 𝑒 : 𝑇 ⇝ 𝑇 ′
holds and iso(𝑒), then for all |𝜓 ⟩ ∈ H (Δ), we have

J⊢ 𝑒 : 𝑇 ⇝ 𝑇 ′K |𝜓 ⟩



 = ∥|𝜓 ⟩∥ .

• If ⊢ 𝑒 : 𝑇 ⇛ 𝑇 ′
holds and iso(𝑒), then for all 𝜌 ∈ L(H (𝑇 )), we have

tr J⊢ 𝑒 : 𝑇 ⇛ 𝑇 ′K(|𝜏⟩ ⟨𝜏 |) = tr(𝜌).
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Proof. I-Unit: 

J𝜎 : Γ ∥ Δ ⊢ () : UnitK |𝜓 ⟩


 = |⟨∅|𝜓 ⟩| ∥ |()⟩∥ = ∥|𝜓 ⟩∥ .

I-Var:

J𝜎 : Γ ∥ Δ ⊢ 𝑥 : 𝑇 K |𝜓 ⟩


2 =

=







 ∑︁
𝑣∈V(𝑇 )

⟨𝑣 |𝜓 ⟩ J𝜎 : Γ ∥ Δ ⊢ 𝑥 : 𝑇 K |𝑥 ↦→ 𝑣⟩








2

=







 ∑︁
𝑣∈V(𝑇 )

⟨𝑣 |𝜓 ⟩ |𝑣⟩








2

=
∑︁

𝑣∈V(𝑇 )
|⟨𝑣 |𝜓 ⟩|2 = ∥|𝜓 ⟩∥2 .

I-Pair:

J𝜎 : Γ ∥ Δ,Δ0,Δ1 ⊢ (𝑒0, 𝑒1) : 𝑇0 ⊗ 𝑇1K |𝜓 ⟩


2 =

= ⟨𝜓 | J𝜎 : Γ ∥ Δ,Δ0,Δ1 ⊢ (𝑒0, 𝑒1) : 𝑇0 ⊗ 𝑇1K†J𝜎 : Γ ∥ Δ,Δ0,Δ1 ⊢ (𝑒0, 𝑒1) : 𝑇0 ⊗ 𝑇1K |𝜓 ⟩ =

= ⟨𝜓 | J𝜎 : Γ ∥ Δ,Δ0,Δ1 ⊢ (𝑒0, 𝑒1) : 𝑇0 ⊗ 𝑇1K†
∑︁

(𝜏,𝜏0,𝜏1 ) ∈V(Δ,Δ0,Δ1 )
⟨𝜏, 𝜏0, 𝜏1 |𝜓 ⟩ (J𝜎 : Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0K |𝜏, 𝜏0⟩ ⊗

⊗ J𝜎 : Γ ∥ Δ,Δ1 ⊢ 𝑒1 : 𝑇1K |𝜏, 𝜏1⟩)

= ⟨𝜓 |
∑︁

(𝜏 ′,𝜏 ′
0
,𝜏 ′
1
) ∈V(Δ,Δ0,Δ1 )

∑︁
(𝜏,𝜏0,𝜏1 ) ∈V(Δ,Δ0,Δ1 )

⟨𝜏, 𝜏0, 𝜏1 |𝜓 ⟩
��𝜏 ′, 𝜏 ′

0
, 𝜏 ′

1

〉
·

·
〈
𝜏 ′, 𝜏 ′

0

�� J𝜎 : Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0K†J𝜎 : Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0K |𝜏, 𝜏0⟩ ·
·
〈
𝜏 ′, 𝜏 ′

1

�� J𝜎 : Γ ∥ Δ,Δ1 ⊢ 𝑒1 : 𝑇1K†J𝜎 : Γ ∥ Δ,Δ1 ⊢ 𝑒1 : 𝑇1K |𝜏, 𝜏1⟩ =

= ⟨𝜓 |
∑︁

(𝜏 ′,𝜏 ′
0
,𝜏 ′
1
) ∈V(Δ,Δ0,Δ1 )

∑︁
(𝜏,𝜏0,𝜏1 ) ∈V(Δ,Δ0,Δ1 )

⟨𝜏, 𝜏0, 𝜏1 |𝜓 ⟩
〈
𝜏 ′, 𝜏 ′

0

��𝜏, 𝜏0〉 〈
𝜏 ′, 𝜏 ′

1

��𝜏, 𝜏1〉 ��𝜏 ′, 𝜏 ′
0
, 𝜏 ′

1

〉
=

= ⟨𝜓 |
∑︁

(𝜏,𝜏0,𝜏1 ) ∈V(Δ,Δ0,Δ1 )
⟨𝜏, 𝜏0, 𝜏1 |𝜓 ⟩ = ∥|𝜓 ⟩∥2 .

I-Ctrl: 






J𝜎 : Γ ∥ Δ,Δ′ ⊢ ctrl 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ′K |𝜓 ⟩








 =
=







 ∑︁
(𝜏,𝜏 ′ ) ∈V(Δ,Δ′ )

⟨𝜏, 𝜏 ′ |𝜓 ⟩
∑︁

𝑣∈V(𝑇 )
⟨𝑣 | JΓ ∥ Δ ⊩ 𝑒 : 𝑇 K ( |𝜎, 𝜏⟩⟨𝜎, 𝜏 |) |𝑣⟩

·
𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J∅ : ∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩ · J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝜏, 𝜏 ′⟩








Since 𝑒 is classical and tr

(
JΓ ∥ Δ ⊩ 𝑒 : 𝑇 K (|𝜎, 𝜏⟩⟨𝜎, 𝜏 |)

)
= 1 by the isometry assumption for the

scrutinee, we must have that

JΓ ∥ Δ ⊩ 𝑒 : 𝑇 K ( |𝜎, 𝜏⟩⟨𝜎, 𝜏 |) = |𝑣⟩ ⟨𝑣 |

for some particular 𝑣 ∈ V(𝑇 ). Then, the entire expression becomes





 ∑︁
(𝜏,𝜏 ′ ) ∈V(Δ,Δ′ )

⟨𝜏, 𝜏 ′ |𝜓 ⟩
𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J∅ : ∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝜏, 𝜏 ′⟩







 .
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Now, since the 𝑒 𝑗 satisfy the spanning judgment, the direct sum of their images in H(𝑇 ) must

contain all of |𝑣 ′⟩ ∈ V(𝑇 ). Furthermore, since we assume the 𝑒 𝑗 are all classical (from T-Ctrl), each

must map each 𝜎 𝑗 to some 𝑣 ′ ∈ V(𝑇 ), and there must be a one-to-one correspondence between 𝑣 ′

and ( 𝑗, 𝜎 𝑗 ). Thus, exactly one value of 𝑗 makes the value of summand nonzero. So, the expression

becomes 





 ∑︁
(𝜏,𝜏 ′ ) ∈V(Δ,Δ′ )

⟨𝜏, 𝜏 ′ |𝜓 ⟩ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝜏, 𝜏 ′⟩







 =
=



J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝜓 ⟩


 = ∥|𝜓 ⟩∥ ,

which follows from the isometry assumption on the RHS.

I-Match:

tr

©­­«J𝜎 : Γ ∥ Δ,Δ0,Δ1 ⊢ match 𝑒


𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ′K(𝜌)
ª®®¬ =

=
∑︁

(𝜏,𝜏0,𝜏1 ),(𝜏 ′,𝜏 ′
0
,𝜏 ′
1
) ∈V(Δ,Δ0,Δ1 )

⟨𝜏, 𝜏0, 𝜏1 | 𝜌
��𝜏 ′, 𝜏 ′

0
, 𝜏 ′

1

〉 ∑︁
𝑣∈V(𝑇 )

⟨𝑣 |
(
J𝜎 : Γ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇 K

(
|𝜏, 𝜏0⟩

〈
𝜏 ′, 𝜏 ′

0

��) ) |𝑣⟩ ·
·

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J∅ : ∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩ · tr
(
J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ1 ⊩ 𝑒′𝑗 : 𝑇

′K
(
|𝜏, 𝜏1⟩

〈
𝜏 ′, 𝜏 ′

1

��) )
Then, by the isometry assumption for the scrutinee, we have that tr

(
JΓ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇 K

(
|𝜏, 𝜏0⟩⟨𝜏 ′, 𝜏 ′0 |

) )
=

tr |𝜏, 𝜏0⟩⟨𝜏 ′, 𝜏 ′0 | = 𝛿𝜏,𝜏 ′𝛿𝜏0,𝜏 ′
0

. So then, by the same argument as for T-Ctrl, we can eliminate the inner

sums and obtaining∑︁
(𝜏,𝜏0,𝜏1 ) ∈V(Δ,Δ0,Δ1 ),𝜏 ′

1
∈V(Δ1 )

⟨𝜏, 𝜏0, 𝜏1 | 𝜌
��𝜏, 𝜏0, 𝜏 ′1〉 tr (

J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ1 ⊩ 𝑒′𝑗 : 𝑇
′K

(
|𝜏, 𝜏1⟩

〈
𝜏, 𝜏 ′

1

��) ) =
=

∑︁
(𝜏,𝜏0,𝜏1 ) ∈V(Δ,Δ0,Δ1 ),𝜏 ′

1
∈V(Δ1 )

⟨𝜏, 𝜏0, 𝜏1 | 𝜌
��𝜏, 𝜏0, 𝜏 ′1〉 tr (

|𝜏, 𝜏1⟩
〈
𝜏, 𝜏 ′

1

��) =
=

∑︁
(𝜏,𝜏0,𝜏1 ) ∈V(Δ,Δ0,Δ1 ),𝜏 ′

1
∈V(Δ1 )

⟨𝜏, 𝜏0, 𝜏1 | 𝜌
��𝜏, 𝜏0, 𝜏 ′1〉 tr (

|𝜏, 𝜏1⟩
〈
𝜏, 𝜏 ′

1

��) =
=

∑︁
(𝜏,𝜏0,𝜏1 ) ∈V(Δ,Δ0,Δ1 )

⟨𝜏, 𝜏0, 𝜏1 | 𝜌 |𝜏, 𝜏0, 𝜏1⟩ = tr(𝜌).

I-Try: Assuming iso(𝑒0),

tr

(
J𝜎 : Γ ∥ Δ0,Δ1 ⊩ try 𝑒0 catch 𝑒1 : 𝑇 K(𝜌)

)
=

=
∑︁

(𝜏0,𝜏1 ),(𝜏 ′
0
,𝜏 ′
1
) ∈V(Δ0,Δ1 )

⟨𝜏0, 𝜏1 | 𝜌
��𝜏 ′
0
, 𝜏 ′

1

〉 [
𝛿𝜏1,𝜏 ′

1

tr

(
J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K

(
|𝜏0⟩⟨𝜏 ′0 |

) )
+

+𝛿𝜏0,𝜏 ′
0

(1 − tr(J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K
(
|𝜏0⟩⟨𝜏 ′0 |

)
)) · tr

(
J𝜎 : Γ ∥ Δ1 ⊩ 𝑒1 : 𝑇 K

(
|𝜏1⟩⟨𝜏 ′1 |

) ) ]
=

=
∑︁

𝜏0∈V(Δ0 ),𝜏1∈V(Δ1 )
⟨𝜏0, 𝜏1 | 𝜌 |𝜏0, 𝜏1⟩ = tr(𝜌).
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I-Catch: Assuming iso(𝑒1),
tr

(
J𝜎 : Γ ∥ Δ0,Δ1 ⊩ try 𝑒0 catch 𝑒1 : 𝑇 K(𝜌)

)
=

=
∑︁

(𝜏0,𝜏1 ),(𝜏 ′
0
,𝜏 ′
1
) ∈V(Δ0,Δ1 )

⟨𝜏0, 𝜏1 | 𝜌
��𝜏 ′
0
, 𝜏 ′

1

〉 [
𝛿𝜏1,𝜏 ′

1

tr

(
J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K

(
|𝜏0⟩⟨𝜏 ′0 |

) )
+

+𝛿𝜏0,𝜏 ′
0

(1 − tr(J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K
(
|𝜏0⟩⟨𝜏 ′0 |

)
)) · tr

(
J𝜎 : Γ ∥ Δ1 ⊩ 𝑒1 : 𝑇 K

(
|𝜏1⟩⟨𝜏 ′1 |

) ) ]
=

=
∑︁

(𝜏0,𝜏1 ),(𝜏 ′
0
,𝜏 ′
1
) ∈V(Δ0,Δ1 )

⟨𝜏0, 𝜏1 | 𝜌
��𝜏 ′
0
, 𝜏 ′

1

〉 [
𝛿𝜏1,𝜏 ′

1

tr

(
J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K

(
|𝜏0⟩⟨𝜏 ′0 |

) )
+

+𝛿𝜏0,𝜏 ′
0

(1 − tr(J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K ( |𝜏0⟩⟨𝜏0 |)))𝛿𝜏1,𝜏 ′
1

]
=

=
∑︁

𝜏0∈V(Δ0 ),𝜏1∈V(Δ1 )
⟨𝜏0, 𝜏1 | 𝜌 |𝜏0, 𝜏1⟩

[
tr

(
J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K ( |𝜏0⟩⟨𝜏0 |)

)
+

+(1 − tr(J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K (|𝜏0⟩⟨𝜏0 |)))
]
=

=
∑︁

𝜏0∈V(Δ0 ),𝜏1∈V(Δ1 )
⟨𝜏0, 𝜏1 | 𝜌 |𝜏0, 𝜏1⟩ = tr(𝜌).

Note that in the above, we used the trace non-increasing property to say that

tr

(
J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K

(
|𝜏0⟩⟨𝜏 ′0 |

) )
≤ tr

(
|𝜏0⟩⟨𝜏 ′0 |

)
= 𝛿𝜏0,𝜏 ′

0

so it is zero when 𝜏0 ≠ 𝜏 ′
0
: this can be seen as a consequence of the correctness of the compilation

procedure (Appendix L.3).

I-App: Here, we must consider both pure and mixed typing. If 𝑓 can be typed as a pure program,

we have that 

J𝜎 : Γ ∥ Δ ⊢ 𝑓 𝑒 : 𝑇 ′K |𝜓 ⟩


 = 

J⊢ 𝑓 : 𝑇 ⇝ 𝑇 ′KJ𝜎 : Γ ∥ Δ ⊢ 𝑒 : 𝑇 K |𝜓 ⟩



 =
=



J𝜎 : Γ ∥ Δ ⊢ 𝑒 : 𝑇 K |𝜓 ⟩


 = ∥|𝜓 ⟩∥ .

Similarly, for mixed typing, we have that

tr

(
J𝜎 : Γ ∥ Δ ⊩ 𝑓 𝑒 : 𝑇 ′K(𝜌)

)
=

= tr

(
J⊢ 𝑓 : 𝑇 ⇛ 𝑇 ′K

(
J𝜎 : Γ ∥ Δ ⊢ 𝑒 : 𝑇 K(𝜌)

) )
=

= tr

(
J𝜎 : Γ ∥ Δ ⊢ 𝑒 : 𝑇 K(𝜌)

)
= tr(𝜌).

I-Gate: This is clear since single-qubit unitary gates are isometries.

I-Left, I-Right: The direct sum injections map betweenH(𝑇0) (resp.H(𝑇1)) and the correspond-
ing isomorphic subspace in H(𝑇0 ⊕ 𝑇1), and hence they are clearly isometries.

I-Abs: Here, we again consider both pure and mixed typing for 𝑒′. If 𝑒′ can be typed as a pure

expression, then 


J⊢ 𝜆𝑒 𝑇↦−→ 𝑒′ : 𝑇 ⇝ 𝑇 ′K |𝜓 ⟩



 =

=


J∅ : ∅ ∥ Δ ⊢ 𝑒′ : 𝑇 ′KJ∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† |𝜓 ⟩



 =
=



J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† |𝜓 ⟩




Now, consider the circumstances under which a single expression 𝑒 can satisfy the spanning

judgment. It is only possible for S-Sum to have been applied if one of the two types summed is

Void. So, in all cases, the dimension of H(𝑇 ) must be equal to the dimension of H(Δ) (for the
case of S-Pair this is enforced by the “no shared free variables” restriction). Since 𝑒 is formed from

just variables, pairs, and applications of isometric programs, it has isometric, and thus unitary,

semantics. This means that the norm of the expression above must be equal to ∥|𝜓 ⟩∥.
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Now, for mixed typing:

tr

(
J⊢ 𝜆𝑒 𝑇↦−→ 𝑒′ : 𝑇 ⇛ 𝑇 ′K(𝜌)

)
=

=
∑︁

𝑣,𝑣′∈V(𝑇 )
⟨𝑣 | 𝜌 |𝑣 ′⟩ tr

(
J∅ : ∅ ∥ Δ ⊩ 𝑒′ : 𝑇 ′K

(
J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† |𝑣⟩⟨𝑣 ′ |J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K

))
=

=
∑︁

𝑣,𝑣′∈V(𝑇 )
⟨𝑣 | 𝜌 |𝑣 ′⟩ tr

(
J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† |𝑣⟩⟨𝑣 ′ |J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K

)
=

=
∑︁

𝑣,𝑣′∈V(𝑇 )
⟨𝑣 | 𝜌 |𝑣 ′⟩ tr

(
⟨𝑣 ′ | J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 KJ∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† |𝑣⟩

)
.

Now, by the same argument as above, J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K must be unitary, so the expression

simplifies to tr(𝜌).
I-Rphase:

J⊢ rphase𝑇
{

𝑒 ↦→ 𝑟

else ↦→ 𝑟 ′

}
: 𝑇 ⇝ 𝑇 K |𝜓 ⟩ =

= 𝑒𝑖𝑟 J∅ ∥ Δ ⊢ 𝑒 : 𝑇 KJ∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† |𝜓 ⟩ + 𝑒𝑖𝑟
′
(
I − J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 KJ∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K†

)
|𝜓 ⟩

Letting 𝑃 = J∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 KJ∅ : ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K†, and observe that by the isometry assumption,

𝑃2 = 𝑃 and 𝑃† = 𝑃 . So, 𝑃 (I − 𝑃) = 𝑃 − 𝑃2 = 0 and (I − 𝑃)2 = I − 2𝑃 + 𝑃2 = I − 𝑃 . Then,



J⊢ rphase𝑇 {
𝑒 ↦→ 𝑟

else ↦→ 𝑟 ′

}
: 𝑇 ⇝ 𝑇 K |𝜓 ⟩





2 =
=




𝑒𝑖𝑟𝑃 |𝜓 ⟩ + 𝑒𝑖𝑟
′ (I − 𝑃) |𝜓 ⟩




 =
=

(
𝑒−𝑖𝑟 ⟨𝜓 | 𝑃 + 𝑒−𝑖𝑟

′ ⟨𝜓 | (I − 𝑃)
) (

𝑒𝑖𝑟𝑃 |𝜓 ⟩ + 𝑒𝑖𝑟
′ (I − 𝑃) |𝜓 ⟩

)
=

= ⟨𝜓 | 𝑃 |𝜓 ⟩ + ⟨𝜓 | (I − 𝑃) |𝜓 ⟩ = ∥|𝜓 ⟩∥2 .

I-Pmatch:






J⊢ pmatch

𝑒1 ↦→ 𝑒′

1

· · ·
𝑒𝑛 ↦→ 𝑒′𝑛

𝑇 𝑇 ′

: 𝑇 ⇝ 𝑇 ′K |𝜓 ⟩









2

=

=






 𝑛∑︁
𝑗=1

J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒′𝑗 : 𝑇 ′KJ∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝜓 ⟩





2 =

=

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

⟨𝜓 | J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 KJ∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒′𝑗 : 𝑇 ′K†J∅ : ∅ ∥ Δ𝑘 ⊢ 𝑒′
𝑘
: 𝑇 ′KJ∅ : ∅ ∥ Δ𝑘 ⊢ 𝑒𝑘 : 𝑇 K† |𝜓 ⟩

By the orthogonality assumption for the RHS in T-Pmatch, we must have J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒′𝑗 :

𝑇 ′K†J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒′𝑘 : 𝑇 ′K = 0 unless 𝑗 = 𝑘 , in which case it must be the identity by the isometry
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assumption for the RHS, so the expression becomes

𝑛∑︁
𝑗=1

⟨𝜓 | J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 KJ∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝜓 ⟩ =

=
∑︁

𝑣𝑖𝑛V(𝑇 )
|⟨𝑣 |𝜓 ⟩|

𝑛∑︁
𝑗=1

⟨𝑣 | J∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 KJ∅ : ∅ ∥ Δ 𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩ = ∥|𝜓 ⟩∥2 ,

which follows by the spanning assumption on the LHS expressions. This completes the analysis of

all the cases for the isometry judgment.

□

H The Erasure Judgment
The erasure judgment (Figure 25) is used for typing Qunity’s ctrl construct, ensuring that it is

possible to correctly perform the necessary uncomputation. This requires that all quantum variables

in the scrutinee must be present “in the same way” in all the RHS expressions. If the purpose of the

control is to apply a controlled phase, this is easily satisfied. If it needs to output some additional

data, it needs to be paired with the original variables, possibly inside a nested ctrl. This condition
is necessary to ensure that ctrl does not discard any quantum information and can be typed as a

pure expression.

erases𝑇 (𝑥 ; 𝑒1, . . . , 𝑒𝑛)
erases𝑇 (𝑥 ; 𝑒1, . . . , 𝑒 𝑗−1, 𝑒 𝑗 ⊲ gphase𝑇 (𝑟), 𝑒 𝑗+1, . . . , 𝑒𝑛)

E-Gphase

erases𝑇 (𝑥 ; 𝑒1, . . . , 𝑒 𝑗−1, 𝑒 𝑗,1, . . . , 𝑒 𝑗,𝑚, 𝑒 𝑗+1, . . . , 𝑒𝑛)

erases𝑇

©­­«𝑥 ; 𝑒1, . . . , 𝑒 𝑗−1, ctrl 𝑒


𝑒′
1
↦→ 𝑒 𝑗,1

· · ·
𝑒′𝑚 ↦→ 𝑒 𝑗,𝑚

𝑇 ′ 𝑇

, 𝑒 𝑗+1, . . . , 𝑒𝑛
ª®®¬

E-Ctrl

erases𝑇 (𝑥 ;𝑥, 𝑥, . . . , 𝑥)
E-Var

erases𝑇0 (𝑥 ; 𝑒0,1, . . . , 𝑒0,𝑛)
erases𝑇0⊗𝑇1 (𝑥 ; (𝑒0,1,𝑒1,1), . . . , (𝑒0,𝑛,𝑒1,𝑛))

E-Pair0

erases𝑇1 (𝑥 ; 𝑒1,1, . . . , 𝑒1,𝑛)
erases𝑇0⊗𝑇1 (𝑥 ; (𝑒0,1,𝑒1,1), . . . , (𝑒0,𝑛,𝑒1,𝑛))

E-Pair1

Fig. 25. Erasure inference rules.
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I Direct Sum Circuit Correctness Proof

1 1

𝑠1

𝑈0

𝑈1

𝑃 (1)

𝑠′
1

𝑠0 − 𝑠1 𝑠′
0
− 𝑠′

1

𝑝1 𝑈1

𝑝0 − 𝑝1

𝑘 𝑓

𝑠′
1

𝑓1

𝑠1

𝑠0 − 𝑠1

𝑝1

𝑝0 − 𝑝1

𝑘

Fig. 26. Improved direct sum circuit for Case 1: 𝑠0 ≥ 𝑠1, 𝑠
′
0
≥ 𝑠′

1
, 𝑝0 ≥ 𝑝1. For this circuit, let 𝑘 = max{0, 𝑓1− 𝑓0},

and let 𝑓 = max{𝑓0, 𝑓1} = 𝑓0 + 𝑘 . The circuit on the left implements the direct sum, while the one on the right

is the implementation of the component 𝑃 (1)
. Note that where𝑈1 is drawn as two separate boxes, these are

not two separate gates, but rather a single gate that only acts on the 𝑠1 and 𝑝1 registers and not on the one in

between them. The curly braces in the circuit on the right indicate a repartitioning of a set of registers taken

together into registers of different sizes, preserving the order of qubits.

1 1

𝑠1

𝑈0

𝑈1

𝑃 (2)

𝑠′
1

𝑠0 − 𝑠1 𝑠′
0
− 𝑠′

1

𝑝0

𝑈1

𝑝1 − 𝑝0

𝑘 𝑓

𝑠′
1

𝑓1

𝑠1

𝑠0 − 𝑠1

𝑝0

𝑝1 − 𝑝0

𝑘

Fig. 27. Improved direct sum circuit for Case 2: 𝑠0 ≥ 𝑠1, 𝑠
′
0
≥ 𝑠′

1
, 𝑝0 ≤ 𝑝1. For this circuit, let

𝑘 = max{0, 𝑓1 − 𝑓0 + 𝑝0 − 𝑝1}, and let 𝑓 = max{𝑓0 + 𝑝1 − 𝑝0, 𝑓1}. The circuit on the left implements the direct

sum, while the one on the right is the implementation of the component 𝑃 (2)
.
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1 1

𝑠1

𝑈0

𝑈1

𝑃
(3)
0

𝑃
(3)
1

𝑠′
0

𝑠0 − 𝑠1 𝑠′
1
− 𝑠′

0

𝑝1 𝑈1

𝑝0 − 𝑝1

𝑘 𝑓

𝑠′
0

𝑓0

𝑠1

𝑠0 − 𝑠1

𝑝1

𝑝0 − 𝑝1

𝑘

𝑠′
1

𝑓1

𝑠1

𝑠0 − 𝑠1

𝑝1

𝑝0 − 𝑝1

𝑘

Fig. 28. Improved direct sum circuit for Case 3: 𝑠0 ≥ 𝑠1, 𝑠
′
0
≤ 𝑠′

1
, 𝑝0 ≥ 𝑝1. For this circuit, let 𝑘 = 𝑠′

1
− 𝑠′

0
, and let

𝑓 = 𝑓0. The circuit on the left implements the direct sum, while the ones on the right are the implementations

of the components 𝑃
(3)
0

and 𝑃
(3)
1

.

1 1

𝑠1

𝑈0

𝑈1

𝑃
(4)
0

𝑃
(4)
1

𝑠′
0

𝑠0 − 𝑠1 𝑠′
1
− 𝑠′

0

𝑝0

𝑈1

𝑝1 − 𝑝0

𝑘 𝑓

𝑠′
0

𝑓0

𝑠1

𝑠0 − 𝑠1

𝑝0

𝑝1 − 𝑝0

𝑘

𝑠′
1

𝑓1

𝑠1

𝑠0 − 𝑠1

𝑝0

𝑝1 − 𝑝0

𝑘

Fig. 29. Improved direct sum circuit for Case 4: 𝑠0 ≥ 𝑠1, 𝑠
′
0
≤ 𝑠′

1
, 𝑝0 ≤ 𝑝1. For this circuit, let

𝑘 = max{0, 𝑠′
1
− 𝑠′

0
+ 𝑝0 − 𝑝1}, and let 𝑓 = 𝑠0 + 𝑝1 − 𝑠′

1
+ 𝑘 . The circuit on the left implements the direct sum,

while the ones on the right are the implementations of the components 𝑃
(4)
0

and 𝑃
(4)
1

.
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Lemma I.1. Suppose it is possible to implement (as specified in Definition 5.2) the operators

𝐸0 : H(𝑇0) → H(𝑇 ′
0
) and 𝐸1 : H(𝑇1) → H(𝑇 ′

1
). Then it is possible to implement the operator

𝐸0 ⊕ 𝐸1 : H(𝑇0 ⊕ 𝑇1) → H(𝑇 ′
0
⊕ 𝑇 ′

1
), using the circuits shown in Figures 26, 27, 28, and 29.

Proof. Let 𝑠0 = size(𝑇0), 𝑠′0 = size(𝑇 ′
0
), 𝑠1 = size(𝑇1), 𝑠′1 = size(𝑇 ′

1
). Suppose that 𝐸0 is imple-

mented by a unitary𝑈0 using 𝑝0 prep qubits and 𝑝1 flag qubits, and 𝐸1 is implemented by a unitary

𝑈1 using 𝑝1 prep qubits and 𝑓1 flag qubits. We have that

𝑠0 + 𝑝0 = 𝑠′
0
+ 𝑓0

𝑠1 + 𝑝1 = 𝑠′
1
+ 𝑓1

We introduce the sets of computational basis states for the qubits in the corresponding regis-

ters: we label these as |𝜉0⟩ , |𝜋0⟩ ,
��𝜉 ′
0

〉
, |𝜙0⟩ for the registers of size 𝑠0, 𝑝0, 𝑠

′
0
, 𝑓0 respectively, and

|𝜉1⟩ , |𝜋1⟩ ,
��𝜉 ′
1

〉
, |𝜙1⟩ for 𝑠1, 𝑝1, 𝑠′1, 𝑓1.

Now, without loss of generality, we can assume that 𝑠0 ≥ 𝑠1, because if this were not the case,

then we can implement 𝐸1 ⊕ 𝐸0 and apply the direct sum’s commutativity isomorphism by simply

surrounding the circuit with Pauli 𝑋 gates on the first “signal” qubit. Now, we have four cases to

analyze.

Case 1: Suppose that 𝑠′
0
≥ 𝑠′

1
and 𝑝0 ≥ 𝑝1. For this case, let 𝑘 = max{0, 𝑓1 − 𝑓0}. Let

𝑓 = max{𝑓0, 𝑓1} = 𝑓0 + 𝑘 . Then, consider the circuit𝑈 shown in Figure 26. First, to verify that the

wire counts are correct:

1+𝑠0+𝑝0+𝑘 = 1+𝑠0+𝑝0+max{0, 𝑓1− 𝑓0} = 1+𝑠′
0
+ 𝑓0+max{0, 𝑓1− 𝑓0} = 1+𝑠′

0
+max{𝑓0, 𝑓1} = 1+𝑠′

0
+ 𝑓

Now, to verify the correctness of the circuit:〈
0, enc(𝑣 ′

0
), 0

��𝑈 |0, enc(𝑣0), 0, 0⟩ =
〈
enc(𝑣 ′

0
), 0

��𝑈0 |enc(𝑣0), 0⟩ =
=

〈
𝑣 ′
0

��𝐸0 |𝑣0⟩ = (
〈
𝑣 ′
0

�� ⊕ 0) (𝐸0 ⊕ 𝐸1) ( |𝑣0⟩ ⊕ 0)

〈
1, enc(𝑣 ′

1
), 0, 0

��𝑈 |0, enc(𝑣0), 0, 0⟩ = 0 = (0 ⊕
〈
𝑣 ′
1

��) (𝐸0 ⊕ 𝐸1) ( |𝑣0⟩ ⊕ 0)

〈
0, enc(𝑣 ′

0
), 0

��𝑈 |1, enc(𝑣1), 0, 0, 0, 0⟩ = 0 = (
〈
𝑣 ′
0

�� ⊕ 0) (𝐸0 ⊕ 𝐸1) (0 ⊕ |𝑣1⟩)

〈
1, enc(𝑣 ′

1
), 0, 0

��𝑈 |1, enc(𝑣1), 0, 0, 0, 0⟩ =

=
〈
enc(𝑣 ′

1
), 0, 0

�� 𝑃 (1)
∑︁
𝜉1,𝜋1

|𝜉1, 0, 𝜋1, 0, 0⟩ ⟨𝜉1, 𝜋1 |𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0, 0

�� ∑︁
𝜉1,𝜋1

∑︁
𝜉 ′
1
,𝜙1

��𝜉 ′
1
, 0, 0, 0, 𝜙1

〉 〈
𝜉 ′
1
, 𝜙1

��𝜉1, 𝜋1〉 ⟨𝜉1, 𝜋1 |𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0, 0

��∑︁
𝜉 ′
1

��𝜉 ′
1
, 0, 0, 0, 0

〉 〈
𝜉 ′
1
, 0

��𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

��𝑈1 |enc(𝑣1), 0⟩ =
=

〈
enc(𝑣 ′

1
), 0

��𝑈1 |enc(𝑣1), 0⟩ =
〈
𝑣 ′
1

��𝐸1 |𝑣1⟩ = (0 ⊕
〈
𝑣 ′
1

��) (𝐸0 ⊕ 𝐸1) (0 ⊕ |𝑣1⟩)
And now, to verify the preservation of encoding validity:

If a valid encoding of 𝑇0 is given as input, the output will always be a valid encoding of 𝑇 ′
0
since

𝑠′
0
≥ 𝑠′

1
. If a valid encoding of𝑇1 is given as input, observe that the register of size 𝑠0 − 𝑠1 must be in

the |0⟩ state. It is not affected by the application of𝑈1. Then, the output register of size 𝑠
′
0
− 𝑠′

1
can
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only be formed from qubits in the input registers of sizes 𝑠0 − 𝑠1, 𝑝0 − 𝑝1, and 𝑘 , and the latter two

must also be |0⟩ since they are part of the prep register. Thus𝑈 preserves encoding validity.

Now, for the adjoint 𝑈 †
, we consider the version of this circuit run in reverse, where the flag

registers are now prep registers and vice versa. If a valid encoding of𝑇 ′
0
is given as input, the output

will always be a valid encoding of 𝑇0 since 𝑠0 ≥ 𝑠1. If a valid encoding of 𝑇1 is given as input, the

register of size 𝑠′
0
− 𝑠′

1
must be in the |0⟩ state. The output register of size 𝑠0 − 𝑠1 can only be formed

from qubits in that register and from the input register of size 𝑓 , which is a prep register. Thus,𝑈 †

also preserves encoding validity.

Case 2: Suppose that 𝑠′
0
≥ 𝑠′

1
and 𝑝0 ≤ 𝑝1. For this case, let 𝑘 = max{0, 𝑓1 − 𝑓0 + 𝑝0 − 𝑝1}, and let

𝑓 = max{𝑓0 + 𝑝1 − 𝑝0, 𝑓1}. Then, consider the circuit𝑈 shown in Figure 27. First, to verify that the

wire counts are correct:

1 + 𝑠0 + 𝑝1 + 𝑘 = 1 + 𝑠0 + 𝑝1 +max{0, 𝑓1 − 𝑓0 + 𝑝0 − 𝑝1} =
= 1 + 𝑠′

0
+ 𝑓0 − 𝑝0 + 𝑝1 +max{0, 𝑓1 − 𝑓0 + 𝑝0 − 𝑝1} = 1 + 𝑠′

0
+max{𝑓0 + 𝑝1 − 𝑝0, 𝑓1} = 1 + 𝑠′

0
+ 𝑓

Now, to verify the correctness of the circuit (we will now omit the obvious cases where the state

of the first qubit does not match):

〈
0, enc(𝑣 ′

0
), 0

��𝑈 |0, enc(𝑣0), 0, 0, 0⟩ =
〈
enc(𝑣 ′

0
), 0

��𝑈0 |enc(𝑣0), 0⟩ =
=

〈
𝑣 ′
0

��𝐸0 |𝑣0⟩ = (
〈
𝑣 ′
0

�� ⊕ 0) (𝐸0 ⊕ 𝐸1) ( |𝑣0⟩ ⊕ 0)〈
1, enc(𝑣 ′

1
), 0, 0

��𝑈 |1, enc(𝑣1), 0, 0, 0⟩ =

=
〈
enc(𝑣 ′

1
), 0, 0

�� 𝑃 (2)
∑︁
𝜉1,𝜋1

|𝜉1, 0, 𝜋1, 0⟩ ⟨𝜉1, 0, 𝜋1, 0|𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0, 0

�� ∑︁
𝜉1,𝜋1

∑︁
𝜉 ′
1
,𝜙1

��𝜉 ′
1
, 0, 0, 𝜙1

〉
⟨𝜉1, 𝜙1 |𝜉1, 𝜋1⟩ ⟨𝜉1, 0, 𝜋1, 0|𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0, 0

��∑︁
𝜉 ′
1

��𝜉 ′
1
, 0, 0, 0

〉 〈
𝜉 ′
1
, 0

��𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

��𝑈1 |enc(𝑣1), 0⟩ =
〈
𝑣 ′
1

��𝐸1 |𝑣1⟩ = (0 ⊕
〈
𝑣 ′
1

��) (𝐸0 ⊕ 𝐸1) (0 ⊕ |𝑣1⟩)

And now, to verify the preservation of encoding validity:

The encoding validity for 𝑇0 and 𝑇
′
0
is clear as in the previous case. If a valid encoding of 𝑇1

is given as input, the register of size 𝑠′
0
− 𝑠′

1
is again formed only from the register of size 𝑠0 − 𝑠1

and prep registers (not the flag register since 𝑓 ≥ 𝑓1). Similarly, for the adjoint circuit, the register

of size 𝑠0 − 𝑠1 is only formed from the registers of size 𝑠′
0
− 𝑠′

1
and 𝑓 . So, the encoding validity is

preserved.

Case 3: Suppose that 𝑠′
0
≤ 𝑠′

1
and 𝑝0 ≥ 𝑝1. For this case, let 𝑘 = 𝑠′

1
− 𝑠′

0
, and let 𝑓 = 𝑓0. Then,

consider the circuit𝑈 shown in Figure 28. First, to verify that the wire counts are correct:

1 + 𝑠0 + 𝑝0 + 𝑘 = 1 + 𝑠′
0
+ 𝑓0 + 𝑠′1 − 𝑠′

0
= 1 + 𝑠′

1
+ 𝑓
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Now, to verify the correctness of the circuit:

〈
0, enc(𝑣 ′

0
), 0, 0

��𝑈 |0, enc(𝑣0), 0, 0⟩ =

=
〈
enc(𝑣 ′

0
), 0, 0

�� 𝑃 (3)
0

∑︁
𝜉0,𝜋0

|𝜉0, 𝜋0, 0⟩ ⟨𝜉0, 𝜋0 |𝑈0 |enc(𝑣0), 0⟩ =

=
〈
enc(𝑣 ′

0
), 0, 0

�� ∑︁
𝜉0,𝜋0

∑︁
𝜉 ′
0
,𝜙0

��𝜉 ′
0
, 0, 𝜙0

〉 〈
𝜉 ′
0
, 𝜙0

��𝜉0, 𝜋0〉 ⟨𝜉0, 𝜋0 |𝑈0 |enc(𝑣0), 0⟩ =

=
〈
enc(𝑣 ′

0
), 0, 0

��∑︁
𝜉 ′
0

��𝜉 ′
0
, 0, 0

〉 〈
𝜉 ′
0
, 0

��𝑈0 |enc(𝑣0), 0⟩ =

=
〈
enc(𝑣 ′

0
), 0

��𝑈0 |enc(𝑣0), 0⟩ =
〈
𝑣 ′
0

��𝐸0 |𝑣0⟩ = (
〈
𝑣 ′
0

�� ⊕ 0) (𝐸0 ⊕ 𝐸1) ( |𝑣0⟩ ⊕ 0)〈
1, enc(𝑣 ′

1
), 0

��𝑈 |1, enc(𝑣1), 0, 0, 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

�� 𝑃 (3)
1

∑︁
𝜉1,𝜋1

|𝜉1, 0, 𝜋1, 0, 0⟩ ⟨𝜉1, 𝜋1 |𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

�� ∑︁
𝜉1,𝜋1

∑︁
𝜉 ′
1
,𝜙1

��𝜉 ′
1
, 𝜙1, 0, 0, 0

〉 〈
𝜉 ′
1
, 𝜙1

��𝜉1, 𝜋1〉 ⟨𝜉1, 𝜋1 |𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

��∑︁
𝜉 ′
1

��𝜉 ′
1
, 0, 0, 0, 0

〉 〈
𝜉 ′
1
, 𝜙1

��𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

��𝑈1 |enc(𝑣1), 0⟩ =
〈
𝑣 ′
1

��𝐸1 |𝑣1⟩ = (0 ⊕
〈
𝑣 ′
1

��) (𝐸0 ⊕ 𝐸1) (0 ⊕ |𝑣1⟩)

The encoding validity preserving property follows by a similar argument as before. If a valid

encoding of 𝑇0 is given as input, the register of size 𝑠′
1
− 𝑠′

0
exactly corresponds to the prep register

of size 𝑘 , which must be in the |0⟩ state. If a valid encoding of 𝑇1 is given as input, the encoding

validity of the output is clear. For the adjoint circuit, if 𝑇 ′
0
is given, the encoding validity is clear

since 𝑠0 ≥ 𝑠1. If 𝑇
′
1
is given the output register of size 𝑠0 − 𝑠1 is only formed from the prep registers.

So, the encoding validity is preserved.

Case 4: Suppose that 𝑠′
0
≤ 𝑠′

1
and 𝑝0 ≤ 𝑝1. For this case, let 𝑘 = max{0, 𝑠′

1
− 𝑠′

0
+ 𝑝0 − 𝑝1}, and let

𝑓 = 𝑠0 + 𝑝1 − 𝑠′
1
+ 𝑘 . Then, consider the circuit𝑈 shown in Figure 29. First, to verify that the wire

counts are correct:

1 + 𝑠0 + 𝑝1 + 𝑘 = 1 + 𝑠0 + 𝑝1 + 𝑓 − 𝑠0 − 𝑝1 + 𝑠′1 = 1 + 𝑠′
1
+ 𝑓
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Now, to verify the correctness of the circuit:〈
0, enc(𝑣 ′

0
), 0, 0

��𝑈 |0, enc(𝑣0), 0, 0, 0⟩ =

=
〈
enc(𝑣 ′

0
), 0, 0

�� 𝑃 (4)
0

∑︁
𝜉0,𝜋0

|𝜉0, 𝜋0, 0, 0⟩ ⟨𝜉0, 𝜋0 |𝑈0 |enc(𝑣0), 0⟩ =

=
〈
enc(𝑣 ′

0
), 0, 0

�� ∑︁
𝜉0,𝜋0

∑︁
𝜉 ′
0
,𝜙0

��𝜉 ′
0
, 0, 0, 𝜙0

〉 〈
𝜉 ′
0
, 𝜙0

��𝜉0, 𝜋0〉 ⟨𝜉0, 𝜋0 |𝑈0 |enc(𝑣0), 0⟩ =

=
〈
enc(𝑣 ′

0
), 0, 0

��∑︁
𝜉 ′
0

��𝜉 ′
0
, 0, 0, 0

〉 〈
𝜉 ′
0
, 0

��𝑈0 |enc(𝑣0), 0⟩ =

=
〈
enc(𝑣 ′

0
), 0

��𝑈0 |enc(𝑣0), 0⟩ =
〈
𝑣 ′
0

��𝐸0 |𝑣0⟩ = (
〈
𝑣 ′
0

�� ⊕ 0) (𝐸0 ⊕ 𝐸1) ( |𝑣0⟩ ⊕ 0)〈
1, enc(𝑣 ′

1
), 0

��𝑈 |1, enc(𝑣1), 0, 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

�� 𝑃 (4)
1

∑︁
𝜉1,𝜋1

|𝜉1, 0, 𝜋1, 0⟩ ⟨𝜉1, 𝜋1 |𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

�� ∑︁
𝜉1,𝜋1

∑︁
𝜉 ′
1
,𝜙1

��𝜉 ′
1
, 𝜙1, 0, 0

〉 〈
𝜉 ′
1
, 𝜙1

��𝜉1, 𝜋1〉 ⟨𝜉1, 𝜋1 |𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

��∑︁
𝜉 ′
1

��𝜉 ′
1
, 0, 0, 0

〉 〈
𝜉 ′
1
, 𝜙1

��𝑈1 |enc(𝑣1), 0⟩ =

=
〈
enc(𝑣 ′

1
), 0

��𝑈1 |enc(𝑣1), 0⟩ =
〈
𝑣 ′
1

��𝐸1 |𝑣1⟩ = (0 ⊕
〈
𝑣 ′
1

��) (𝐸0 ⊕ 𝐸1) (0 ⊕ |𝑣1⟩)

For the encoding validity: if a valid encoding of 𝑇0 is given as input, the register of size 𝑠′
1
− 𝑠′

0
is

only formed from the prep registers of size 𝑝1 − 𝑝0 and 𝑘 : we can confirm that

𝑓 = 𝑠0 + 𝑝1 − 𝑠′
1
+max{0, 𝑠′

1
− 𝑠′

0
+ 𝑝0 − 𝑝1} = 𝑠0 +max{𝑝1 − 𝑠′

1
,−𝑠′

0
+ 𝑝0} =

= 𝑠′
0
+ 𝑓0 − 𝑝0 +max{𝑝1 − 𝑠′

1
,−𝑠′

0
+ 𝑝0} = 𝑓0 +max{𝑝1 − 𝑠′

1
− 𝑝0 + 𝑠′0, 0} ≥ 𝑓0,

so the flag register does not overlap with the 𝑠′
1
− 𝑠′

0
register. If a valid encoding of 𝑇1 is given as

input, the encoding validity of the output is clear. For the adjoint: if a valid encoding of 𝑇 ′
0
is given

as input, the encoding validity is clear. If a valid encoding of 𝑇 ′
1
is given as input, the register of

size 𝑠0 − 𝑠1 is only formed from the prep registers, so the encoding validity is preserved.

This completes the analysis of all four cases, and thus completes the proof for the direct sum

circuit construction. □

J Notation and Definitions for Binary Trees
First, we can define a binary tree R as either Leaf or (R0,R1), where R0 and R1 are binary trees,

the left and right children of R.
We can define size and height functions as:

Definition J.1.

size(Leaf) := 1

size((R0,R1)) := size(R0) + size(R1)
height(Leaf) := 0

height((R0,R1)) := 1 +max(height(R0), height(R1))

Then, we can define the following:
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Definition J.2 (Direct sum of operators (or states or spaces) along a binary tree).⊕
𝑗 :Leaf

𝐸 𝑗 := 𝐸1

⊕
𝑗 :(R0,R1 )

𝐸 𝑗 :=
©­«
⊕
𝑗 :R0

𝐸 𝑗
ª®¬ ⊕ ©­«

⊕
𝑗 :R1

𝐸 𝑗+size(R0 )
ª®¬

As a shorthand, we can write

𝐸⊕R =
⊕
𝑗 :R

𝐸.

Definition J.3 (Direct sum of operators (or states or spaces) along a binary tree, leveled to height ℎ).⊕
𝑗 :𝐿 (Leaf,0)

𝐸 𝑗 := 𝐸1

⊕
𝑗 :𝐿 (Leaf,ℎ)

𝐸 𝑗 :=
©­«

⊕
𝑗 :𝐿 (Leaf,ℎ−1)

𝐸 𝑗
ª®¬ ⊕ 0 (where ℎ ∈ N, ℎ > 0)

⊕
𝑗 :𝐿 ( (R0,R1 ),ℎ)

𝐸 𝑗 :=
©­«

⊕
𝑗 :𝐿 (R0,ℎ−1)

𝐸 𝑗
ª®¬ ⊕ ©­«

⊕
𝑗 :𝐿 (R1,ℎ−1)

𝐸size(R0 )
ª®¬

Note that the 0 in the above definition exists in the space {0}: thus, leveling operation is effectively

an extension of the additive unit isomorphism. As a shorthand, we can write⊕
𝑗 :𝐿 (R)

𝐸 𝑗 :=
⊕

𝑗 :𝐿 (R,height(R) )
𝐸 𝑗 ,

and

𝐸⊕𝐿 (R) =
⊕
𝑗 :𝐿 (R)

𝐸.

Summing along a leveled tree, as in Definition J.3, can be thought of as adding left children to all

nodes in the tree, until they reach a specified height (which must be at least the height of the tree).

This construction will be useful when constructing the new spanning circuit.

Definition J.4 (Indexed injection into a tree).

inj
Leaf

1
|𝑣⟩ = |𝑣⟩

inj
(R0,R1 )
𝑘

|𝑣⟩ =
{
inj

R0

𝑘
|𝑣⟩ ⊕ 0

⊕R1
if 1 ≤ 𝑘 ≤ size(R1)

0
⊕R1 ⊕ inj

R1

𝑘−size(R0 ) |𝑣⟩ otherwise.

Definition J.5 (Indexed injection into a leveled tree).

inj
𝐿 (Leaf,0)
1

|𝑣⟩ = |𝑣⟩

inj
𝐿 (Leaf,ℎ)
1

|𝑣⟩ = inj
𝐿 (Leaf,ℎ−1)
1

|𝑣⟩ ⊕ 0 (where ℎ ∈ N, ℎ > 0)

inj
𝐿 ( (R0,R1 ),ℎ)
𝑘

|𝑣⟩ =
{
inj

𝐿 (R0,ℎ−1)
𝑘

|𝑣⟩ ⊕ 0
⊕𝐿 (R1,ℎ−1)

if 1 ≤ 𝑘 ≤ size(R1)
0
⊕𝐿 (R1,ℎ−1) ⊕ inj

𝐿 (R1,ℎ−1)
𝑘−size(R0 ) |𝑣⟩ otherwise.
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K Proofs of Correctness for Low-Level Compilation
In this section, we reproduce the proofs from Appendix H.1 in Voichick et al., with appropriate

modifications. The constructions in this section correspond to primitive operations in Qunity’s

intermediate representation. Note, however, that this does not constitute a proof of correctness of

the entire Qunity compilation procedure, as mathematically formalizing the circuit specification

data structures, the process of circuit instantiation, and qubit allocation and recycling in registers

is a complex task beyond the scope of this work. Note that we do not need the “validation” circuits

introduced in Voichick et al. since our construction guarantees the preservation of valid encodings:

this property is not stated explicitly in the following, but it is is clear for the circuits in this section

as the direct sum (Appendix I) is the only truly nontrivial construction in terms of encoding validity.

LemmaK.1. It is always possible to implement the direct sum injections Jleft𝑇0⊕𝑇1K and Jright𝑇0⊕𝑇1K.

Proof. First, one can implement the operator left𝑇0⊕𝑇1 : H(𝑇0) → H(𝑇0) ⊕ H (𝑇1) using
1 +max{size(𝑇0), size(𝑇1)} − size(𝑇0) prep wires and 0 flag wires with this circuit:

size(𝑇0 )
size(𝑇0) 1

1

max{size(𝑇0), size(𝑇1)}
max{size(𝑇0), size(𝑇1)} − size(𝑇0)

Using 𝑈 to represent the qubit-based unitary implemented by this circuit, we can show that it

meets the needed criteria: 〈
enc(left𝑇0⊕𝑇1𝑣 ′), 0

��𝑈 |enc(𝑣), 0, 0⟩
= ⟨0, enc(𝑣 ′), 0|𝑈 |enc(𝑣), 0, 0⟩
= ⟨0, enc(𝑣 ′), 0|0, enc(𝑣), 0⟩
= ⟨enc(𝑣 ′) | enc(𝑣)⟩
= ⟨𝑣 ′ |𝑣⟩
= (⟨𝑣 ′ | ⊕ 0) ( |𝑣⟩ ⊕ 0)
= ⟨left𝑇0⊕𝑇1𝑣 ′ |left𝑇0⊕𝑇1𝑣⟩〈

enc(right𝑇0⊕𝑇1𝑣
′), 0

��𝑈 |enc(𝑣), 0, 0⟩
= ⟨1, enc(𝑣 ′), 0|𝑈 |enc(𝑣), 0, 0⟩
= ⟨1, enc(𝑣 ′), 0|0, enc(𝑣), 0⟩
= 0

= (0 ⊕ ⟨𝑣 ′ |) ( |𝑣⟩ ⊕ 0)
= ⟨right𝑇0⊕𝑇1𝑣

′ |left𝑇0⊕𝑇1𝑣⟩

Similarly, one can implement the operator right𝑇0⊕𝑇1 : H(𝑇1) → H(𝑇0) ⊕ H (𝑇1) using 1 +
max{size(𝑇0), size(𝑇1)} − size(𝑇1) prep wires and 0 flag wires like this:

size(𝑇1 )

size(𝑇1) 𝑋 1

1

max{size(𝑇0), size(𝑇1)}
max{size(𝑇0), size(𝑇1)} − size(𝑇1)
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enc(left𝑇0⊕𝑇1𝑣 ′), 0

��𝑈 |enc(𝑣), 0, 0⟩
= ⟨0, enc(𝑣 ′), 0|𝑈 |enc(𝑣), 0, 0⟩
= ⟨0, enc(𝑣 ′), 0|1, enc(𝑣), 0⟩
= ⟨enc(𝑣 ′) | enc(𝑣)⟩
= 0

= (⟨𝑣 ′ | ⊕ 0) (0 ⊕ |𝑣⟩)
= ⟨left𝑇0⊕𝑇1𝑣 ′ |right𝑇0⊕𝑇1𝑣⟩〈

enc(right𝑇0⊕𝑇1𝑣
′), 0

��𝑈 |enc(𝑣), 0, 0⟩
= ⟨1, enc(𝑣 ′), 0|𝑈 |enc(𝑣), 0, 0⟩
= ⟨1, enc(𝑣 ′), 0|1, enc(𝑣), 0⟩
= ⟨enc(𝑣 ′) | enc(𝑣)⟩
= ⟨𝑣 ′ |𝑣⟩
= (0 ⊕ ⟨𝑣 ′ |) (0 ⊕ |𝑣⟩)
= ⟨right𝑇0⊕𝑇1𝑣

′ |right𝑇0⊕𝑇1𝑣⟩
□

When we construct circuits of these operators, we are implicitly using three things: identity

operators (represented by bare wires), tensor products (represented by vertically-stacked gates),

and operator composition (represented by horizontally-stacked gates). To justify this form of

circuit diagram, we must show that these constructions are always possible. It is always possible to

implement the identity operator I : H(𝑇 ) → H(𝑇 ), by using an identity circuit with no prep or

flag wires. The next two lemmas demonstrate that tensor products and compositions are possible.

Lemma K.2. Suppose it is possible to implement the operators 𝐸0 : H0 → H ′
0
and 𝐸1 : H1 → H ′

1
.

Then it is possible to implement the operator 𝐸0 ⊗ 𝐸1 : H0 ⊗ H1 → H ′
0
⊗ H ′

1
.

Proof. Assume 𝐸0 is implemented by 𝑈0 with 𝑝0 prep wires and 𝑓0 flag wires, and assume that

𝐸1 is implemented by 𝑈1 with 𝑝1 prep wires and 𝑓1 flag wires. The following qubit circuit 𝑈 then

implements 𝐸0 ⊗ 𝐸1 with 𝑝0 + 𝑝1 prep wires and 𝑓0 + 𝑓1 flag wires:

size(H0)
𝑈0

size(H ′
0
)

size(H1) size(H ′
1
)

𝑝0 𝑓0

𝑝1 𝑓1

〈
enc(𝑣 ′

0
), enc(𝑣 ′

1
), 0, 0

��𝑈 |enc(𝑣0), enc(𝑣1), 0, 0⟩
=

〈
enc(𝑣 ′

0
), 0, enc(𝑣 ′

1
), 0

�� (𝑈0 ⊗ 𝑈1) |enc(𝑣0), 0, enc(𝑣1), 0⟩
=

〈
enc(𝑣 ′

0
), 0

��𝑈0 |enc(𝑣0), 0⟩ ·
〈
enc(𝑣 ′

1
), 0

��𝑈1 |enc(𝑣1), 0⟩
=

〈
𝑣 ′
0

��𝐸0 |𝑣0⟩ · 〈𝑣 ′1��𝐸1 |𝑣1⟩
=

〈
𝑣 ′
0
, 𝑣 ′

1

�� (𝐸0 ⊗ 𝐸1) |𝑣0, 𝑣1⟩
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□

Lemma K.3. Suppose it is possible to implement the operators 𝐸0 : H0 → H ′
and 𝐸1 : H ′ → H1.

Then it is possible to implement the operator 𝐸1𝐸0 : H0 → H1.

Proof. Assume 𝐸0 is implemented by 𝐶 (𝐸0) = 𝑈0 with 𝑝0 prep wires and 𝑓0 flag wires, and

assume that 𝐸1 is implemented by𝐶 (𝐸1) = 𝑈1 with 𝑝1 prep wires and 𝑓1 flag wires. Let 𝐵
′
be a basis

forH ′
. The following qubit circuit𝑈 then implements 𝐸1𝐸0 with 𝑝0 + 𝑝1 prep wires and 𝑓0 + 𝑓1 flag

wires:

size(H′ )
size(H0)

𝑈0 𝑈1

size(H1)

𝑝0 𝑓1

𝑝1 𝑓0

⟨enc(𝑣1), 0, 0|𝑈 |enc(𝑣0), 0, 0⟩
= ⟨enc(𝑣1), 0, 0| (𝑈1 ⊗ I) (I ⊗ swap) (𝑈0 ⊗ I) |enc(𝑣0), 0, 0⟩
= (⟨enc(𝑣1), 0|𝑈1 ⊗ ⟨0|) (I ⊗ swap) (𝑈0 |enc(𝑣0), 0⟩ ⊗ |0⟩)
= (⟨enc(𝑣1), 0|𝑈1) (I ⊗ |0⟩⟨0|) (𝑈0 |enc(𝑣0), 0⟩)

=
∑︁

𝑏∈{0,1}size(H′ )

⟨enc(𝑣1), 0|𝑈1 |𝑏, 0⟩⟨𝑏, 0|𝑈0 |enc(𝑣0), 0⟩

=
∑︁

|𝑣′ ⟩∈𝐵′

⟨enc(𝑣1), 0|𝐶 (𝐸1) | enc(𝑣 ′), 0⟩⟨enc(𝑣 ′), 0|𝐶 (𝐸0) |enc(𝑣0), 0⟩

=
∑︁

|𝑣′ ⟩∈𝐵′

⟨𝑣1 | 𝐸1 |𝑣 ′⟩⟨𝑣 ′ |𝐸0 |𝑣0⟩

= ⟨𝑣1 | 𝐸1

( ∑︁
𝑣′∈𝐵′

|𝑣 ′⟩⟨𝑣 ′ |
)
𝐸0 |𝑣0⟩

= ⟨𝑣1 | 𝐸1I𝐸0 |𝑣0⟩
= ⟨𝑣1 | 𝐸1𝐸0 |𝑣0⟩

□

The adjoint is another useful construction that we will need in Appendix L, motivating the

following lemma:

Lemma K.4. Suppose it is possible to implement the operator 𝐸 : H → H ′
. Then it is possible to

implement the operator 𝐸† : H ′ → H .

Proof. Assume 𝐸 is implemented by 𝑈 with 𝑝 prep wires and 𝑓 flag wires. Given the circuit for

𝑈 , one can construct a circuit for 𝑈 †
in the standard way: by taking the adjoint of each gate in the

circuit and reversing the order. This circuit 𝑈 †
then implements 𝐸† with 𝑓 prep wires and 𝑝 flag
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wires.

size(H ′)
𝑈 †

size(H)

𝑓 𝑝

⟨enc(𝑣 ′), 0|𝑈 † |enc(𝑣), 0⟩
= (⟨enc(𝑣), 0|𝑈 |enc(𝑣 ′), 0⟩)∗

= (⟨𝑣 | 𝐸 |𝑣 ′⟩)∗

= ⟨𝑣 ′ | 𝐸† |𝑣⟩

□

Lemma K.5. Suppose it is possible to implement the operators 𝐸0 : H0 → H ′
0
and 𝐸1 : H1 → H ′

1
.

Then it is possible to implement the operator 𝐸0 ⊕ 𝐸1 : H0 ⊕ H1 → H ′
0
⊕ H ′

1
.

Proof. See Lemma I.1. □

It is standard to use the tensor product monoidally, implicitly using vector space isomorphisms

(H1 ⊗ H2) ⊗ H3 ≈ H1 ⊗ (H2 ⊗ H3) and C ⊗ H ≈ H ≈ H ⊗ C. Under the most general definition

of the tensor product, these are isomorphisms rather than strict equality [24, Chapter 14], but

these isomorphisms can typically be used implicitly. Our encoding ensures that these implicit

isomorphisms do not require any low-level gates because enc(((𝑣1,𝑣2),𝑣3)) = enc((𝑣1,(𝑣2,𝑣3)))
and enc(((),𝑣)) = enc(𝑣) = enc((𝑣,())).
However, the associativity and distributivity isomorphisms for the direct sum do correspond

to different encodings, so we must show how to implement them. Note that the additive unit

isomorphisms were already implemented in Lemma K.1. They are left𝑇⊕Void and rightVoid⊕𝑇 ,
and their inverses are their adjoints as compiled in Lemma K.4. The following lemma demonstrates

how to compile the associativity isomorphism:

Lemma K.6. Let 𝑇1, 𝑇2, and 𝑇3 be arbitrary types. Then it is possible to implement the direct sum’s

associativity isomorphism assoc : (H (𝑇1) ⊕ H (𝑇2)) ⊕ H (𝑇3) → H(𝑇1) ⊕ (H (𝑇2) ⊕ H (𝑇3)).

Proof. Define the following integers:

𝑛max = max{size(𝑇1), size(𝑇2), size(𝑇3)}
𝑝 = 𝑛max −max{max{size(𝑇1), size(𝑇2)}, size(𝑇3) − 1}
𝑓 = 𝑛max −max{size(𝑇1) − 1,max{size(𝑇2), size(𝑇3)}

We can implement “shifting” operations rsh and lsh via a series of swap gates that enacts a

rotation permutation, so that rsh |𝜓1,𝜓2, . . . ,𝜓𝑛−1,𝜓𝑛⟩ = |𝜓𝑛,𝜓1,𝜓2, . . . ,𝜓𝑛−1⟩ and lsh = rsh
−1
.

The following qubit circuit 𝑈 then implements the associator with the 𝑝 prep wires and 𝑓 flag

wires.

1 1

𝑛max

1 1

1 + 𝑛max
rsh lsh

1 + 𝑛max
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We can show that this circuit has the desired behavior:��
enc

(
left(𝑇1⊕𝑇2 )⊕𝑇3 (left𝑇1⊕𝑇2𝑣)

)
, 0

〉
= |0, 0, enc(𝑣), 0⟩
↦→∗ |0, enc(𝑣), 0, 0⟩
=

��
enc(left𝑇1⊕(𝑇2⊕𝑇3 )𝑣), 0

〉��
enc

(
left(𝑇1⊕𝑇2 )⊕𝑇3 (right𝑇1⊕𝑇2𝑣)

)
, 0

〉
= |0, 1, enc(𝑣), 0⟩
↦→∗ |1, 0, enc(𝑣), 0⟩
=

��
enc

(
right𝑇1⊕(𝑇2⊕𝑇3 ) (left𝑇2⊕𝑇3𝑣)

)
, 0

〉��
enc

(
right(𝑇1⊕𝑇2 )⊕𝑇3𝑣

)
, 0

〉
= |1, enc(𝑣), 0⟩
↦→ |1, 0, enc(𝑣), 0⟩
↦→ |1, 1, enc(𝑣), 0⟩
=

��
enc

(
right𝑇1⊕(𝑇2⊕𝑇3 ) (right𝑇2⊕𝑇3𝑣)

)
, 0

〉
□

We can now implement the monoidal isomorphisms for the tensor product and direct sum. Both

of these are symmetric monoidal categories, and the swap maps are straightforward to implement,

using swap gates to implement 𝑇0 ⊗ 𝑇1 � 𝑇1 ⊗ 𝑇0, and using a single Pauli-X gate on the indicator

qubit to implement 𝑇0 ⊕ 𝑇1 � 𝑇1 ⊕ 𝑇0. We will also need distributivity of the tensor product over

the direct sum, part of the definition of a bimonoidal category [35] (sometimes known as a “rig

category” [5]).

Lemma K.7. Let 𝑇 , 𝑇0, and 𝑇1 be arbitrary types. It is possible to implement the distributivity

isomorphism distr : H(𝑇 ) ⊗ (H (𝑇0) ⊕ H (𝑇1)) � (H (𝑇 ) ⊗ H (𝑇0)) ⊕ (H (𝑇 ) ⊗ H (𝑇1)), which acts

like |𝑣⟩ ⊗ (|𝑣0⟩ ⊕ |𝑣1⟩) ↦→ |𝑣, 𝑣0⟩ ⊕ |𝑣, 𝑣1⟩.

Proof. This can be done with no prep or flag wires:

size(𝑇 ) 1

1 size(𝑇 )
max{size(𝑇0), size(𝑇1)} max{size(𝑇0), size(𝑇1)}

It should be clear from the value encoding that this circuit has the correct behavior. □

In the high-level circuits, we will often use some transformation of the distr construction, for

example:

• its adjoint (H (𝑇 ) ⊗ H (𝑇0)) ⊕ (H (𝑇 ) ⊗ H (𝑇1)) � H(𝑇 ) ⊗ (H (𝑇0) ⊕ H (𝑇1)),
• its composition with swaps (H (𝑇0) ⊕H (𝑇1)) ⊗H (𝑇 ) � (H (𝑇0) ⊗H (𝑇 )) ⊕ (H (𝑇1) ⊗H (𝑇 )),
• compositions of distributions (H (𝑇00) ⊕ H (𝑇01)) ⊗ (H (𝑇10) ⊕ H (𝑇11)) � (H (𝑇00) ⊗
H (𝑇10)) ⊕ (H (𝑇00) ⊗ H (𝑇11)) ⊕ (H (𝑇01) ⊗ H (𝑇10)) ⊕ (H (𝑇01) ⊗ H (𝑇11)).

We will denote all of these as “distr,” but the transformation being applied should always be clear

from context.

Additional operators used in Qunity’s intermediate representation include “context partition” and

“context merge” operators. We maintain the invariant that when contexts are encoded into qubit
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registers, the encodings of the variables are stored in lexicographic order. Therefore, implementing

the isomorphismH(Δ0,Δ1) → H(Δ0) ⊗ H (Δ1) may require the use of SWAP gates. We use these

operators implicitly in most of the constructions in Appendix L.

Lemma K.8 (pure error handling). Suppose it is possible to implement a contraction 𝐸 : H → H ′
.

Then it is possible to implement a norm-preserving operator 𝐸f : H → H ′ ⊕ Hf for some “flag space”

Hf such that Jleft𝑇⊕𝑇 ′K†𝐸f = 𝐸.

Proof. Assume that 𝐸 is implemented by the unitary𝑈 with 𝑝 prep wires and 𝑓 flag wires. Then,

since we assume encoding validity to be preserved, we can write

𝑈 |enc(𝑣), 0⟩ = ©­«
∑︁

𝑣′∈V(𝑇 ′ )
⟨𝑣 ′ | 𝐸 |𝑣⟩ |enc(𝑣 ′), 0⟩ª®¬ + |𝜓𝑣⟩

for some |𝜓𝑣⟩ ∈ Hf with (I ⊗ |0⟩⟨0|) |𝜓𝑣⟩ = 0. We use 𝐸f defined such that

𝐸f |𝑣⟩ = ©­«
∑︁

𝑣′∈V(𝑇 ′ )
⟨𝑣 ′ | 𝐸 |𝑣⟩ |𝑣 ′⟩ª®¬ ⊕ |𝜓𝑣⟩ = 𝐸 |𝑣⟩ ⊕ |𝜓𝑣⟩ .

This definition ensures that Jleft𝑇⊕𝑇 ′K†𝐸f |𝑣⟩ = Jleft𝑇⊕𝑇 ′K† (𝐸 |𝑣⟩ ⊕ |𝜓𝑣⟩) = 𝐸 |𝑣⟩. See that

∥𝐸 |𝑣⟩∥ = ∥𝑈 |enc 𝑣, 0⟩∥ = 1, so 𝐸f is norm-preserving.

The following circuit implements 𝐸f with 𝑝 + 1 prep wires and no flag wires.

size(H′ )

𝑓

size(H) 1

1

𝑈

size(H ′)

𝑝 𝑓

|enc(𝑣), 0, 0⟩ ↦→ |0, enc(𝑣), 0⟩
↦→ |0⟩ ⊗ 𝑈 |enc(𝑣), 0⟩

=
©­«

∑︁
𝑣′∈V(𝑇 ′ )

⟨𝑣 ′ | 𝐸 |𝑣⟩ |0, enc 𝑣 ′, 0⟩ª®¬ + |0,𝜓𝑣⟩

↦→ ©­«
∑︁

𝑣′∈V(𝑇 ′ )
⟨𝑣 ′ | 𝐸 |𝑣⟩ |0, enc 𝑣 ′, 0⟩ª®¬ + |1,𝜓𝑣⟩

⟨0, 𝑣 ′, 0|𝐶 (𝐸f) |enc(𝑣), 0, 0⟩ = ⟨0, 𝑣 ′, 0| ©­«
∑︁

𝑣′∈V(𝑇 ′ )
⟨𝑣 ′ | 𝐸 |𝑣⟩ |0, enc 𝑣 ′, 0⟩ª®¬

= (⟨𝑣 ′ | ⊕ 0)𝐸f |𝑣⟩
⟨1, 𝑣 ′ |𝐶 (𝐸f) |enc(𝑣), 0, 0⟩ = ⟨1, 𝑣 ′ |1,𝜓𝑣⟩

= (0 ⊕ ⟨𝑣 ′ |)𝐸f |𝑣⟩
□

Lemma K.9 (mixed error handling). Suppose it is possible to implement the completely positive

trace-non-increasing linear superoperator E ∈ L(L(H),L(H ′)). Then, it is possible to implement a
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completely positive trace-preserving linear superoperator CPTP(E) ∈ L(L(H),L(H ′ ⊕ C)) such
that for all 𝜌 ∈ L(H),

CPTP(E)(𝜌) = E(𝜌) ⊕ (tr(𝜌) − tr(E(𝜌))).

Proof. Assuming E is implemented by the unitary 𝑈 with 𝑝 prep wires, 𝑓 flag wires, and 𝑔

garbage wires, the following circuit achieves the desired result with 𝑝 + size(H ′) + 1 prep wires,

no flag wires, and 𝑓 + size(H ′) + 𝑔 garbage wires:

size(H′ )

𝑓

size(H) 1

1

𝑈

size(H ′)

𝑝 𝑓

𝑔

size(H ′) size(H ′)

This circuit works by turning flag wires from E into garbage wires for CPTP(E). The first qubit is
used as an indicator of failure, and in the event of failure, the output of𝑈 is treated as garbage and

replaced with a fresh set of |0⟩ qubits from the prep register, as required by the bitstring encoding of

sum types. Here, the “control” on the flag wires should be understood to apply the gate conditioned

on any of the qubits on the control register being in the |1⟩ state, which can be implemented using

a control construct conditioned on all of the qubits on the control register being in the |0⟩ state
followed by an uncontrolled gate.

To prove that this circuit superoperator Ccptp correctly implements CPTP(E), we must show

that 〈
𝑣 ′
1

��Ccptp ( |𝑣1⟩⟨𝑣2 |)
��𝑣 ′
2

〉
=

∑︁
𝑏

〈
enc(𝑣 ′

1
), 𝑏

�� E(| enc(𝑣1), 0⟩⟨enc(𝑣2), 0|) ��enc(𝑣 ′2), 𝑏〉
for all 𝑣1, 𝑣2 ∈ V(𝑇 ), 𝑣 ′

1
, 𝑣 ′

2
∈ V(𝑇 ′ ⊕ Unit).

We will consider three cases for 𝑣 ′
1
and 𝑣 ′

2
.

• First, suppose both are in the “success” (non-error) subspace, and see that

(
〈
𝑣 ′
1

�� ⊕ 0) CPTP(E)(|𝑣1⟩⟨𝑣2 |) (
��𝑣 ′
2

〉
⊕ 0) =

〈
𝑣 ′
1

�� E(|𝑣1⟩⟨𝑣2 |) ��𝑣 ′2〉 .
To see that this equals∑︁

𝑏

〈
0, enc(𝑣 ′

1
), 𝑏

��Ccptp ( | enc(𝑣1), 0⟩⟨enc(𝑣2), 0|)
��0, enc(𝑣 ′

2
), 𝑏

〉
,

see from the circuit that a 0 output on the first wire also implies a 0 output on the 𝑓 segment

of the output wires, as well as the final size(H ′) section, so we really care about∑︁
𝑏∈{0,1}𝑔

〈
0, enc(𝑣 ′

1
), 0, 𝑏, 0

��Ccptp ( | enc(𝑣1), 0⟩⟨enc(𝑣2), 0|)
��0, enc(𝑣 ′

2
), 0, 𝑏, 0

〉
.

The requirements placed on𝑈 ensure that this equality holds.

• Consider the case where exactly one of the two values is in the error subspace, for example

(
〈
𝑣 ′
1

�� ⊕ 0) CPTP(E)(|𝑣1⟩⟨𝑣2 |) (0 ⊕
��𝑣 ′
2

〉
) = 0. Our circuit works correctly in this case because〈

0, enc(𝑣 ′
1
), 𝑏

��Ccptp ( | enc(𝑣1), 0⟩⟨enc(𝑣2), 0|)
��1, enc(𝑣 ′

2
), 𝑏

〉
is always zero, regardless of 𝑏. To

see this, see that the 𝑓 garbage bits are all zero if and only if the first indicator output bit is

zero, so any setting of 𝑏 would cause one of the two sides of the expression to vanish. In
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other words, there is no superposition between the error and non-error subspaces because

the discarded garbage collapses the state into one of the two.

• In the final case, both 𝑣 ′
1
and 𝑣 ′

2
are in the error subspace, so we must show that∑︁

𝑏

⟨1, 0, 𝑏 | Ccptp ( | enc(𝑣1), 0⟩⟨enc(𝑣2), 0|) |1, 0, 𝑏⟩ = tr( |𝑣1⟩⟨𝑣2 |) − tr(E(|𝑣1⟩⟨𝑣2 |)),

as we are encoding an error value as "1" ++ "0"size(H
′ )
. This case is constrained by the first

two, as it is the only possible value that would ensure that CPTP(E) is trace-preserving.
To verify that CPTP(E) is trace-preserving, see that there are no flag wires and𝑈 cannot

output invalid encodings without setting flag qubits, so there is no way for the trace to

decrease.

□

Lemma K.10 (purification). Suppose it is possible to implement the completely positive trace-non-

increasing linear superoperator E ∈ L(L(H),L(H ′)). Then, it is possible to implement a contraction

𝐸 ∈ L(H ,H ′ ⊗ Hg) for some “garbage” Hilbert space Hg with the following property: for any

𝜌 ∈ L(H), |𝜓 ⟩ ∈ H ′
, there is some

��𝑔𝜌,𝜓 〉
∈ Hg such that

⟨𝜓 | E(𝜌) |𝜓 ⟩ =
〈
𝑔𝜌,𝜓 ,𝜓

��𝐸𝜌𝐸† ��𝑔𝜌,𝜓 ,𝜓 〉
Proof. Assuming E is implemented by the unitary 𝑈 with 𝑝 prep wires, 𝑓 flag wires, and 𝑔

garbage wires, the following circuit achieves the desired result with 𝑝 prep wires and 𝑓 flag wires

by setting Hg = C2
𝑔

:

size(H)

𝑈

size(H ′)

𝑝 𝑔

𝑓

This circuit simply feeds the existing garbage wires into an additional output. □

Next, we consider some results about how to implement trace-non-increasing superoperators

with low-level qubit-based unitaries.

Lemma K.11. For any type 𝑇 , it is possible to implement a superoperator E : L(H (𝑇 )) →
L(H (Unit)) that computes the trace of its input, effectively discarding it.

Proof. This gate is implemented with an empty (identity) circuit by setting 𝑝 = 𝑓 = 0, 𝑔 =

size(𝑇 ).
size(𝑇 ) 𝑔∑︁

𝑔∈{0,1}size(𝑇 )

⟨enc(()), 𝑔| I𝜌I† |enc(()), 𝑔⟩ = tr(𝜌)

□

In Appendix L, we will also be constructing circuits from these trace-non-increasing superopera-

tors. Again, we must justify this by demonstrating that tensor products and function composition

are possible.

Lemma K.12. Suppose it is possible to implement the superoperators E0 : L(H0) → L(H ′
0
) and

E1 : L(H1) → L(H ′
1
). Then it is possible to implement the operator E0 ⊗ E1 : L(H0 ⊗ H1) →

L(H ′
0
⊗ H ′

1
).
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Proof. Assume 𝐸0 is implemented by𝑈0 with 𝑝0 prep wires, 𝑓0 flag wires, and 𝑔 garbage wires.

Assume 𝐸1 is implemented by 𝑈1 with 𝑝1 prep wires, 𝑓1 flag wires, and 𝑔 garbage wires. The

following qubit circuit𝑈 then implements 𝐸0 ⊗ 𝐸1 with 𝑝 = (𝑝0 + 𝑝1) prep wires, 𝑓 = (𝑓0 + 𝑓1) flag
wires, and 𝑔 = (𝑔0 + 𝑔1) garbage wires:

size(H0)

𝑈0

size(H ′
0
)

size(H ′
1
)

size(H1) 𝑓0

𝑝0

𝑈1

𝑓1

𝑔0

𝑝1 𝑔1

∑︁
𝑔0∈{0,1}𝑔0

∑︁
𝑔1∈{0,1}𝑔1

〈
enc(𝑣 ′

0,1), enc(𝑣 ′1,1), 0, 𝑔0, 𝑔1
��𝑈 (𝜌0 ⊗ 𝜌1 ⊗ |0⟩⟨0|)

·𝑈 † ��
enc(𝑣 ′

0,2), enc(𝑣 ′1,2), 0, 𝑔0, 𝑔1
〉

=
∑︁

𝑔0∈{0,1}𝑔0

∑︁
𝑔1∈{0,1}𝑔1

〈
enc(𝑣 ′

0,1), 0, 𝑔0, enc(𝑣 ′1,1), 0, 𝑔1
�� (𝑈0 ⊗ 𝑈1) (𝜌0 ⊗ |0⟩⟨0| ⊗ 𝜌1 ⊗ |0⟩⟨0|)

· (𝑈0 ⊗ 𝑈1)†
��
enc(𝑣 ′

0,2), 0, 𝑔0, enc(𝑣 ′1,2), 0, 𝑔1
〉

=
∑︁

𝑔0∈{0,1}𝑔0

〈
enc(𝑣 ′

0,1), 0, 𝑔0
��𝑈0 (𝜌0 ⊗ |0⟩⟨0|)𝑈 †

0

��
enc(𝑣 ′

0,2), 0, 𝑔0
〉

·
∑︁

𝑔1∈{0,1}𝑔1

〈
enc(𝑣 ′

1,1), 0, 𝑔1
��𝑈1 (𝜌1 ⊗ |0⟩⟨0|)𝑈 †

1

��
enc(𝑣 ′

1,2), 0, 𝑔1
〉

=
〈
𝑣 ′
0,1

�� E0 (𝜌0)
��𝑣 ′
0,2

〉
·
〈
𝑣 ′
1,1

�� E1 (𝜌1)
��𝑣 ′
1,2

〉
=

〈
𝑣 ′
0,1, 𝑣

′
1,1

�� (E0 ⊗ E1) (𝜌0 ⊗ 𝜌1)
��𝑣 ′
0,2, 𝑣

′
1,2

〉
□

Lemma K.13. Suppose it is possible to implement the superoperators E0 : L(H0) → L(H ′) and
E1 : L(H ′) → L(H1). Then it is possible to implement the operator E1 ◦ E0 : L(H0) → L(H1).

Proof. Assume 𝐸0 is implemented by 𝑈0 with 𝑝0 prep wires, 𝑓0 flag wires, and 𝑔0 garbage wires.

Assume 𝐸1 is implemented by 𝑈1 with 𝑝1 prep wires, 𝑓1 flag wires, and 𝑔1 garbage wires. The

following qubit circuit𝑈 then implements 𝐸0 ⊗ 𝐸1 with 𝑝0 + 𝑝1 prep wires, 𝑓0 + 𝑓1 flag wires, and
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𝑔0 + 𝑔1 garbage wires:
size(H′ )

size(H0)

𝑈0 𝑈1

size(H1)

𝑓1

𝑝0 𝑓0

𝑝1 𝑔1

𝑔0

As with the other compositions, we’re grouping the flags from the two together and grouping the

garbage from the two together. This diagram uses a couple of swap gates that do not correspond

to physical gates but are just there to ensure wires in the diagram don’t collide. This is necessary

because of the way that we are using single wires to represent different numbers of qubits, for

example the unitaries𝑈0 and𝑈1 would have the same number of input qubits as output qubits. □

Lemma K.14 (Tree Leveling Operator). Referring to the notation in Appendix J, let R be a binary

tree of size 𝑛. Let ℎ ≥ height(R), and let H1, . . . ,H𝑛 be Hilbert spaces corresponding to Qunity types

or contexts. It is possible to implement an operator

level(R;ℎ;H1, . . . ,H𝑛) :
⊕
𝑗 :R

H𝑗 →
⊕
𝑗 :𝐿 (R)

H𝑗 ,

such that

level(R;ℎ;H1, . . . ,H𝑛) injR𝑗 |𝑣⟩ = inj
𝐿 (R,ℎ)
𝑗

|𝑣⟩

Proof. For the case where R = Leaf, we can implement this using ℎ prep wires and no flag

wires with the following circuit𝑈 :

size(H1) ℎ

ℎ size(H1)

⟨0, enc(𝑣 ′) |𝑈 |enc(𝑣), 0⟩ =
= ⟨enc(𝑣 ′) |enc 𝑣⟩ =

= ⟨𝑣 ′ | injR
1
inj

𝐿 (R,ℎ)†
1

inj
𝐿 (R,ℎ)
1

inj
R†
1

|𝑣⟩ =
= ⟨𝑣 ′ | level(Leaf;ℎ;H1)† level(Leaf;ℎ;H1) |𝑣⟩

Now, when R = (R0,R1), we can simply write

level((R0,R1);ℎ;H1, . . . ,H𝑛) = level(R0;ℎ−1;H1, . . . ,Hsize(R0 ) )⊕level(R1;ℎ−1;Hsize(R0 )+1, . . . ,H𝑛),

where we take the direct sum of the operators using the construction in Appendix I. It is clear that

this is correct from Definition J.3. □

The tree leveling operator allows us to take advantage of the way the encoding is structured

and split a direct sum encoding into separate “index” and “data” registers, which will be used for

constructing the orthogonality circuit in Appendix L.2.
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L Proofs of Correctness for High-Level Compilation
In this section, we justify the correctness of the high-level stage of the compilation procedure,

reproducing the original proofs from Voichick et al., with modifications from the addition of the

new constructs and the changes described in Section 7.

L.1 Erasure Compilation
Lemma L.1 (erasure compilation). Suppose (Γ, Γ𝑗 ∥ Δ,Δ′ ⊢ 𝑒′𝑗 : 𝑇

′) for all 𝑗 ∈ {1, . . . , 𝑛} and
erases𝑇 ′ (𝑥 ; 𝑒′

1
, . . . , 𝑒′𝑛) is true for all 𝑥 ∈ dom(Δ). Then, one can implement an operator

Jerases𝑇 ′ (Δ; 𝑒′
1
, . . . , 𝑒′𝑛)K : H(Δ) ⊗ H (𝑇 ′) → H(𝑇 ′)

with the following behavior for all 𝜎 ∈ V(Γ), 𝜎 𝑗 ∈ V(Γ𝑗 ), 𝜏 ∈ V(Δ), 𝜏 ′ ∈ V(Δ′):

|𝜏⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝜏, 𝜏 ′⟩ ↦→ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝜏, 𝜏 ′⟩

Proof. We construct the circuit by recursing on Δ. In the base case, Δ = ∅ and an identity

operator (empty circuit) suffices. Thus, we focus on the inductive case where our context is

(𝑥 : 𝑇𝑥 ,Δ), assuming the inductive hypothesis that Jerases𝑇 ′ (Δ; 𝑒′
1
, . . . , 𝑒′𝑛)K is implementable with

the behavior:

|𝜏⟩⊗J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩ ↦→ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥𝑥 : 𝑇𝑥 ,Δ,Δ

′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

(Note that 𝑥 appears here even though this is the inductive hypothesis, which would normally

be free of 𝑥 . This is still a valid induction principle; we are effectively inducting on the number

of variables that must be erased.) The problem is then reduced to implementing an operator

Jerases𝑇 ′ (𝑥 ; 𝑒′
1
, . . . , 𝑒′𝑛)K : H(𝑇𝑥 ) ⊗ H (𝑇 ′) → H(𝑇 ′) with the following behavior:

|𝑣⟩⊗J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩ ↦→ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥𝑥 : 𝑇𝑥 ,Δ,Δ

′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

H(𝑇 ′ )

H(𝑇𝑥 )

erases𝑇 ′ (𝑥 ; 𝑒′
1
, . . . , 𝑒′𝑛)H (Δ)

erases𝑇 ′ (Δ; 𝑒′
1
, . . . , 𝑒′𝑛)

H (𝑇 ′) H (𝑇 ′)

Jerases𝑇 ′ (𝑥 : 𝑇𝑥 ,Δ; 𝑒
′
1
, . . . , 𝑒′𝑛)K

: |𝑥 ↦→ 𝑣, 𝜏⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

↦→ |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

↦→ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

The rest of this proof constructs this gate Jerases𝑇 ′ (𝑥 ; 𝑒′
1
, . . . , 𝑒′𝑛)K by induction on the rule used

to prove the erasure judgment.

E-Var: In this case, 𝑒′
1
= · · · = 𝑒′𝑛 = 𝑥 and 𝑇 ′ = 𝑇𝑥 . We know that Δ = Δ′ = ∅ because these

contexts must be relevant.
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H(𝑇 ′)

H (𝑇 ′) H (𝑇 ′)

Jerases𝑇 ′ (𝑥 ; 𝑒′
1
, . . . , 𝑒′𝑛)K

: |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇 ′ ⊢ 𝑥 : 𝑇 ′K |𝑥 ↦→ 𝑣⟩
= |𝑣⟩ ⊗ |𝑣⟩
↦→ |𝑣⟩
= J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇 ′ ⊢ 𝑥 : 𝑇 ′K |𝑥 ↦→ 𝑣⟩

E-Gphase: In this case, the circuit produced by the inductive hypothesis already has the needed

behavior.

Jerases𝑇 ′ (𝑥 ; 𝑒′
1
, . . . , 𝑒′𝑗−1, 𝑒

′
𝑗 ⊲ gphase𝑇 (𝑟), 𝑒

′
𝑗+1, . . . , 𝑒

′
𝑛)K

: |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′𝑗 ⊲ gphase𝑇 (𝑟) : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

= |𝑣⟩ ⊗ 𝑒𝑖𝑟 J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

↦→ 𝑒𝑖𝑟 J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′𝑗 : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

= J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′𝑗 ⊲ gphase𝑇 (𝑟) : 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

E-Ctrl: This rule allows us effectively to “inline” the right side of the ctrl expressions for the
purpose of the erases judgment. Assume one of the expressions is of the following form:

ctrl 𝑒


𝑒 𝑗,1 ↦→ 𝑒′𝑗,1

· · ·
𝑒 𝑗,𝑚 ↦→ 𝑒′𝑗,𝑚

𝑇 𝑇 ′

Then, we can use the fact that the semantics of ctrl is a linear combination of the semantics of

its subexpressions:

Jerases𝑇 ′ (𝑥 ; 𝑒′
1
, . . . , 𝑒′𝑗−1, ctrl 𝑒

{· · ·}
𝑇 𝑇 ′ , 𝑒

′
𝑗+1, . . . , 𝑒

′
𝑛)K

: |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ ctrl 𝑒

{· · ·}
𝑇 𝑇 ′ : 𝑇

′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

=
∑︁

· · · |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗,𝑘 : Γ, Γ𝑗,𝑘 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′

𝑗,𝑘
: 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

↦→
∑︁

· · · J𝜎, 𝜎 𝑗,𝑘 : Γ, Γ𝑗,𝑘 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ 𝑒′

𝑗,𝑘
: 𝑇 ′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

= J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ
′ ⊢ ctrl 𝑒

{· · ·}
𝑇 𝑇 ′ : 𝑇

′K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

E-Pair0:

H(𝑇𝑥 )
erases𝑇0 (𝑥 ; 𝑒0,1, . . . , 𝑒0,𝑛)

H (𝑇0) H (𝑇0)

H (𝑇1) H (𝑇1)
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Jerases𝑇0⊗𝑇1 (𝑥 ; (𝑒0,1,𝑒1,1), . . . , (𝑒0,𝑛,𝑒1,𝑛))K
: |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ

′ ⊢ (𝑒0, 𝑗,𝑒1, 𝑗) : 𝑇0 ⊗ 𝑇1K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩
= |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ0,Δ1,Δ

′
∗,Δ

′
0
,Δ′

1
⊢ (𝑒0, 𝑗,𝑒1, 𝑗) : 𝑇0 ⊗ 𝑇1K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏0, 𝜏1, 𝜏
′
∗, 𝜏

′
0
, 𝜏 ′

1

〉
= |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ0,Δ

′
∗,Δ

′
0
⊢ 𝑒0, 𝑗 : 𝑇0K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏0, 𝜏
′
∗, 𝜏

′
0

〉
⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ1,Δ

′
∗,Δ

′
1
⊢ 𝑒1, 𝑗 : 𝑇1K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏1, 𝜏
′
∗, 𝜏

′
1

〉
↦→ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ0,Δ

′
∗,Δ

′
0
⊢ 𝑒0, 𝑗 : 𝑇0K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏0, 𝜏
′
∗, 𝜏

′
0

〉
⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ1,Δ

′
∗,Δ

′
1
⊢ 𝑒1, 𝑗 : 𝑇1K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏1, 𝜏
′
∗, 𝜏

′
1

〉
= J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ

′ ⊢ (𝑒0, 𝑗,𝑒1, 𝑗) : 𝑇0 ⊗ 𝑇1K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

E-Pair1:

H(𝑇𝑥 )
erases𝑇1 (𝑥 ; 𝑒1,1, . . . , 𝑒1,𝑛)

H (𝑇0) H (𝑇0)

H (𝑇1) H (𝑇1)

Jerases𝑇0⊗𝑇1 (𝑥 ; (𝑒0,1,𝑒1,1), . . . , (𝑒0,𝑛,𝑒1,𝑛))K
: |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ

′ ⊢ (𝑒0, 𝑗,𝑒1, 𝑗) : 𝑇0 ⊗ 𝑇1K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩
= |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ0,Δ1,Δ

′
∗,Δ

′
0
,Δ′

1
⊢ (𝑒0, 𝑗,𝑒1, 𝑗) : 𝑇0 ⊗ 𝑇1K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏0, 𝜏1, 𝜏
′
∗, 𝜏

′
0
, 𝜏 ′

1

〉
= |𝑣⟩ ⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ0,Δ

′
∗,Δ

′
0
⊢ 𝑒0, 𝑗 : 𝑇0K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏0, 𝜏
′
∗, 𝜏

′
0

〉
⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ1,Δ

′
∗,Δ

′
1
⊢ 𝑒1, 𝑗 : 𝑇1K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏1, 𝜏
′
∗, 𝜏

′
1

〉
↦→ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ0,Δ

′
∗,Δ

′
0
⊢ 𝑒0, 𝑗 : 𝑇0K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏0, 𝜏
′
∗, 𝜏

′
0

〉
⊗ J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ∗,Δ1,Δ

′
∗,Δ

′
1
⊢ 𝑒1, 𝑗 : 𝑇1K

��𝑥 ↦→ 𝑣, 𝜏∗, 𝜏1, 𝜏
′
∗, 𝜏

′
1

〉
= J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ 𝑥 : 𝑇𝑥 ,Δ,Δ

′ ⊢ (𝑒0, 𝑗,𝑒1, 𝑗) : 𝑇0 ⊗ 𝑇1K |𝑥 ↦→ 𝑣, 𝜏, 𝜏 ′⟩

We have thus demonstrated that a circuit with this semantics can always be constructed. □

L.2 The New Orthogonality Circuit
Lemma L.2. Suppose that ortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
holds, with tree structure R (Definition 7.1) and 𝑛 > 0.

Suppose that each 𝑒 𝑗 is typed using the pure expression typing judgment with no classical context and

quantum context Δ 𝑗 . Then, it is possible to construct

Jortho𝑇
(
𝑒1, . . . , 𝑒𝑛

)
K : H(𝑇 ) →

⊕
𝑗 :R

H(Δ 𝑗 ),

such that

Jortho𝑇
(
𝑒1, . . . , 𝑒𝑛

)
KJ𝑒 𝑗 K

��𝜏 𝑗 〉 = inj
R
𝑗

��𝜏 𝑗 〉 .
Proof. For O-Void and O-Unit, this operator is simply the identity circuit on an empty register.

For O-Var, it is also the identity circuit, since it maps |𝑣⟩ ↦→ |𝑥 ↦→ 𝑣⟩.
For O-IsoApp, we define

Jortho𝑇 ′
(
𝑓 𝑒1, . . . , 𝑓 𝑒𝑛

)
K = Jortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
KJ𝑓 K† .



Compositional Quantum Control Flow with Efficient Compilation inQunity 77

Then, we have that

Jortho𝑇 ′
(
𝑓 𝑒1, . . . , 𝑓 𝑒𝑛

)
KJ𝑓 𝑒 𝑗 K

��𝜏 𝑗 〉 = Jortho𝑇
(
𝑒1, . . . , 𝑒𝑛

)
KJ𝑓 K†J𝑓 KJ𝑒 𝑗 K

��𝜏 𝑗 〉 =
= Jortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
KJ𝑒 𝑗 K

��𝜏 𝑗 〉 = inj
R
𝑗

��𝜏 𝑗 〉 .
Here, we used the fact that 𝑓 is an isometry to say that J𝑓 K†J𝑓 K is the identity.
For O-Sum, we define

Jortho𝑇0⊕𝑇1

(
left𝑇0⊕𝑇1𝑒1, . . . , left𝑇0⊕𝑇1𝑒𝑛,

right𝑇0⊕𝑇1𝑒
′
1
, . . . , right𝑇0⊕𝑇1𝑒

′
𝑛′

)
K = Jortho𝑇0

(
𝑒1, . . . , 𝑒𝑛

)
K ⊕ Jortho𝑇1

(
𝑒′
1
, . . . , 𝑒′𝑛′

)
K.

Suppose that the tree structures corresponding to ortho𝑇0

(
𝑒1, . . . , 𝑒𝑛

)
and ortho𝑇1

(
𝑒′
1
, . . . , 𝑒′𝑛′

)
are

R0 and R1. This circuit acts as:

Jleft𝑇0⊕𝑇1𝑒 𝑗 K
��𝜏 𝑗 〉 = J𝑒 𝑗 K

��𝜏 𝑗 〉 ⊕ 0 ↦→ inj
R0

𝑗

��𝜏 𝑗 〉 ⊕ 0
⊕R1 = inj

(R0,R1 )
𝑗

��𝜏 𝑗 〉
Jright𝑇0⊕𝑇1𝑒

′
𝑗 K

��𝜏 ′𝑗 〉 = 0 ⊕ J𝑒′𝑗 K
��𝜏 ′𝑗 〉 ↦→ 0

⊕R1 ⊕ inj
R0

𝑗

��𝜏 𝑗 〉 = inj
(R0,R1 )
size(R0 )+𝑗

��𝜏 𝑗 〉 .
Now, for O-Pair: suppose that we have ortho𝑇0

(
𝑒1, . . . , 𝑒𝑛

)
holds with tree structure R0 where

each 𝑒 𝑗 is typed with quantum context Δ 𝑗 , and for each 𝑗 , we have ortho𝑇1

(
𝑒′𝑗,1, . . . , 𝑒

′
𝑗,𝑛 𝑗

)
with

tree structure R 𝑗

1
, where each 𝑒 𝑗,𝑘 is typed with quantum context Δ′

𝑗,𝑘
. The tree structure of the

combined sequence of pairs will be R, which is obtained by replacing the 𝑗 th leaf of R0 with a copy

of R 𝑗

1
. Now, the operator is defined by the following circuit:

C⊕𝐿 (R
0
)

⊕
𝑗 :R

0

H(Δ𝑗 )
⊕

𝑗 :𝐿 (R
0
)
⊕

𝑘 :𝐿 (R 𝑗
1
) H(Δ𝑗,𝑘 )level(R0)

· · ·

H (𝑇0) Jortho𝑇0
(
𝑒1, . . . , 𝑒𝑛

)
K ⊕

𝑗 :𝐿 (R0 )Jortho𝑇1
(
𝑒′𝑗,1, . . . , 𝑒

′
𝑗,𝑛 𝑗

)
K

· · ·

H (𝑇1)

· · ·

⊕
𝑗 :𝐿 (R0 ) level

† (R 𝑗

1
, ℎ)

level
† (R0)

⊕
𝑗 :R0

⊕
𝑘 :R 𝑗

1

FinalMerge𝑗,𝑘

⊕
𝑗 :R H(Δ 𝑗 )

· · · ⊕
𝑗 :𝐿 (R0 ) level(R

𝑗

1
, ℎ)

where we define ℎ = max𝑗 {height(R 𝑗

1
)}, we define FinalMerge𝑗,𝑘 (with a diagram drawn in the

style of low-level circuits) as:

size(Δ 𝑗 )
merge(Δ 𝑗 ,Δ

′
𝑗,𝑘
)

max𝑗 ′
(
size(Δ 𝑗 ′ ) − size(Δ 𝑗 )

)
size(Δ′

𝑗,𝑘
)

max𝑗 ′,𝑘 ′

(
size(Δ′

𝑗 ′,𝑘 ′ ) − size(Δ′
𝑗,𝑘
)
)

where the bottom two wires are marked as flag registers, since they contain zero-padding regions

from direct sum encodings.

The level operator (Lemma K.14) is designed to separate a potentially uneven direct sum

encoding structure into a separate index register and data register. This allows us to concatenate
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the tree path from R0 and R 𝑗

1
into a single path in the combined tree, then merge the pieces of

data from the two sides of the pair and put them in the correct place in R. The action of the circuit

proceeds as follows:

(1) First, applying ortho𝑇0

(
𝑒1, . . . , 𝑒𝑛

)
, we obtain the direct sum of the Δ 𝑗 over R0.

(2) After applying the leveling operator, we are able to partition our quantum register into two:

the index register contains only the information about which path was taken on the tree

(with trailing zeros where appropriate due to different-sized branches), and the data register

corresponds to each of the Δ 𝑗 (with trailing zeros where appropriate due to different-sized

contexts).

(3) We take a direct sum of the operators Jortho𝑇1
(
𝑒′𝑗,1, . . . , 𝑒

′
𝑗,𝑛 𝑗

)
K over the leveled tree 𝐿(R0)

and then take the direct sum of the leveling operators for each R 𝑗

1
, where the leveling is

done to the maximum height of all the R 𝑗

1
. This creates a “stack” of the index registers of

the trees: the first block of qubits encodes a branch in R0, possibly followed by some zeros,

then the next block encodes a branch in R 𝑗

1
for the 𝑗 corresponding to the path taken in the

first block, possibly followed by more trailing zeros. The data register then contains all the

Δ′
𝑗,𝑘

starting at the same position.

(4) We put the stacked index registers on top and stack the data registers below them. Now,

we need to eliminate the zeros interspersed between encodings and undo the separation

into blocks. We apply the direct sum of the adjoints of the leveling operators for the R 𝑗

1
,

which removes the zeros between the index encodings and the combined data of Δ 𝑗 and

Δ′
𝑗,𝑘
. Note that these leveling operators are not exactly the same as the ones before, since

the data registers are now larger (we omit this in the notation in the circuit diagram).

(5) We then apply the adjoint of the leveling operator for R0. We now have a sum over the

correct structure R, but each leaf corresponds to two blocks of contexts, possibly separated

by zeros.

(6) Applying the direct sum of the FinalMerge operators, we combine all the contexts in the

correct way, obtaining the desired result.

Finally, for O-Sub: Since we assume 𝑛 > 0 (we will treat 𝑛 = 0 as a special case for the control

flow constructs), at least one of the expressions before the application of O-Sub must be kept. If

R = Leaf, the circuit then must be the identity. Now, we define the circuit𝑈R recursively in terms

of subtrees and selected indices. Suppose that R = (R0,R1). We can associate these subtrees with

types𝑇0,𝑇1 that are formed as sum types taken along the binary trees, with the contexts at the leaves

treated as product types (the encoding is identical). In the case where R0 has no selected indices,

we define 𝑈R = Jright𝑇0⊕𝑇1K
†
, and if R1 has no selected indices, we define 𝑈R = Jleft𝑇0⊕𝑇1K†.

Otherwise, we just define𝑈R = 𝑈R0
⊕ 𝑈R1

. It is clear that this operator specifically removes those

subtrees that only contain discarded expressions.

□

While the above circuit appears complicated, it is more efficient than the existing solution in

many cases. In fact, if the expressions contain no variables in the first elements of the pairs, this

entire circuit actually simplifies to the identity. This is because in that case, we do not need to

do anything to combine the indices of the two trees, as the encodings already correspond to the

desired structure.

L.3 Qunity Typing Judgment Compilation
Here we give the compiled circuits for all of the typing judgment cases and demonstrate algebraically

that they are correct. In the following circuit diagrams, the “controlled cloud” is a “share” gate,



Compositional Quantum Control Flow with Efficient Compilation inQunity 79

implemented simply as a series of CNOT gates between the given register and an ancilla register.

Additionally, we put control symbols on wires associated with classical contexts, to indicate that

any interaction with these wires only uses such share gates.

T-Gate: We assume that our low-level circuits contain these gates as primitives.

H(Bit) cos(𝑟𝜃/2) −𝑒𝑖𝑟𝜆 sin(𝑟𝜃/2)
𝑒𝑖𝑟𝜙 sin(𝑟𝜃/2) 𝑒𝑖 (𝑟𝜙+𝑟𝜆 ) cos(𝑟𝜃/2)

H (Bit)

|0⟩ ∈ H (Bit)
↦→ cos(𝑟𝜃/2) |0⟩ + 𝑒𝑖𝑟𝜙 sin(𝑟𝜃/2) |1⟩ ∈ H (Bit)

|1⟩ ∈ H (Bit)
↦→ − 𝑒𝑖𝑟𝜆 sin(𝑟𝜃/2) |0⟩ + 𝑒𝑖 (𝑟𝜙+𝑟𝜆 ) cos(𝑟𝜃/2) |1⟩ ∈ H (Bit)

T-Left: This was already implemented in Appendix K.

H(𝑇0) left𝑇0⊕𝑇1 H(𝑇0 ⊕ 𝑇1)

|𝑣⟩ ∈ H (𝑇0)
↦→ |𝑣⟩ ⊕ 0

T-Right: This was already implemented in Appendix K.

H(𝑇1) right𝑇0⊕𝑇1 H(𝑇0 ⊕ 𝑇1)

|𝑣⟩ ∈ H (𝑇1)
↦→ 0 ⊕ |𝑣⟩

T-PureAbs:

H(Δ)
H(𝑇 ) 𝑒† 𝑒′ H(𝑇 ′)

|𝑣⟩ ∈ H (𝑇 )
↦→ J𝑒K† |𝑣⟩ ∈ H (Δ)
↦→ J𝑒′KJ𝑒K† |𝑣⟩ ∈ H (𝑇 ′)

T-Rphase: Let 𝐸f : H(𝑇 ) → H(Δ) ⊕ Hf be the norm-preserving operator constructed from

J∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† using Lemma K.8. The compiled T-Rphase circuit then looks like this:

H(Δ)⊕Hf H(Δ)⊕HfH(𝑇 ) 𝐸f 𝑒𝑖𝑟
′
IΔ ⊕ 𝑒𝑖𝑟 If 𝐸

†
f

H(𝑇 )
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Using the fact that J∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† = JleftΔ⊕GK†𝐸f,

𝐸†
f

(
𝑒𝑖𝑟 IΔ ⊕ 𝑒𝑖𝑟

′
If
)
𝐸f

= 𝐸†
f

(
𝑒𝑖𝑟 JleftΔ⊕GKJleftΔ⊕GK† + 𝑒𝑖𝑟

′
JrightΔ⊕GKJrightΔ⊕GK†

)
𝐸f

= 𝐸†
f

(
𝑒𝑖𝑟 JleftΔ⊕GKJleftΔ⊕GK† + 𝑒𝑖𝑟

′ (I − JleftΔ⊕GKJleftΔ⊕GK†)
)
𝐸f

= 𝑒𝑖𝑟𝐸†
f
JleftΔ⊕GKJleftΔ⊕GK†𝐸f + 𝑒𝑖𝑟

′
(
I − 𝐸†

f
JleftΔ⊕GKJleftΔ⊕GK†𝐸f

)
= 𝑒𝑖𝑟 J∅ ∥ Δ ⊢ 𝑒 : 𝑇 KJ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K† + 𝑒𝑖𝑟

′
(
I − J∅ ∥ Δ ⊢ 𝑒 : 𝑇 KJ∅ ∥ Δ ⊢ 𝑒 : 𝑇 K†

)
T-Pmatch: ⊕

𝑗 :R
0

H(Δ𝑗 )
⊕

𝑗 :R
1

H(Δ𝑗 )
H(𝑇 ) Jortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
K TreeRearrange(R0,R1) Jortho𝑇

(
𝑒1, . . . , 𝑒𝑛

)
K† H(𝑇 ′)

This is explained in Section 7.2.

T-Channel: H(𝑇 ) 𝑓 H(𝑇 ′)

|𝑣⟩⟨𝑣 ′ | ∈ L(H (𝑇 ))
↦→ J𝑓 K|𝑣⟩⟨𝑣 ′ |J𝑓 K† ∈ L(H (𝑇 ′))

T-MixedAbs:

H(Δ)
H(𝑇 ) 𝑒† 𝑒′ H(𝑇 ′)

|𝑣⟩⟨𝑣 ′ | ∈ L(H (𝑇 ))
↦→ J𝑒K† |𝑣⟩⟨𝑣 ′ |J𝑒K ∈ L(H (Δ))

↦→ J𝑒′K
(
J𝑒K† |𝑣⟩⟨𝑣 ′ |J𝑒K

)
∈ L(H (𝑇 ′))

T-Unit:

H(Γ) H (Γ)
H (∅) H (Unit)

|𝜎,∅⟩ ∈ H (Γ) ⊗ H (∅)
= |𝜎, ()⟩ ∈ H (Γ) ⊗ H (Unit)

T-Cvar:

H(Γ) H (Γ)
H (𝑥 : 𝑇 ) H (𝑥 : 𝑇 )

H (Γ′) H (Γ′)

H (∅) H (𝑇 )

|𝜎, 𝑥 ↦→ 𝑣, 𝜎 ′⟩ ∈ H (Γ, 𝑥 : 𝑇, Γ′)
↦→ |𝜎, 𝑥 ↦→ 𝑣, 𝜎 ′, 𝑣⟩ ∈ H (Γ, 𝑥 : 𝑇, Γ′) ⊗ H (𝑇 )
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T-Qvar:

H(Γ) H (Γ)
H (𝑥 : 𝑇 ) H (𝑇 )

|𝜎, 𝑥 ↦→ 𝑣⟩ ∈ H (Γ, 𝑥 : 𝑇 )
= |𝜎, 𝑣⟩ ∈ H (Γ) ⊗ H (𝑇 )

T-PurePair:

H(Δ)

H(Δ)

H(Γ) H (Γ)

H (Δ)
Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0

H(𝑇0)

H (Δ0)

Γ ∥ Δ,Δ1 ⊢ 𝑒1 : 𝑇1
H(𝑇1)

H (Δ1)

|𝜎, 𝜏, 𝜏0, 𝜏1⟩ ∈ H (Γ,Δ,Δ0,Δ1)
↦→ |𝜎, 𝜏, 𝜏0, 𝜏, 𝜏1⟩ ∈ H (Γ,Δ,Δ0,Δ,Δ1)
↦→ |𝜎⟩ ⊗ J𝜎 : Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0K |𝜏, 𝜏0⟩ ⊗ |𝜏, 𝜏1⟩ ∈ H (Γ) ⊗ H (𝑇0) ⊗ H (Δ,Δ1)
↦→ |𝜎⟩ ⊗ J𝜎 : Γ ∥ Δ,Δ0 ⊢ 𝑒0 : 𝑇0K |𝜏, 𝜏0⟩ ⊗ J𝜎 : Γ ∥ Δ,Δ1 ⊢ 𝑒1 : 𝑇1K |𝜏, 𝜏1⟩ ∈ H (Γ) ⊗ H (𝑇0 ⊗ 𝑇1)

T-Ctrl:

In the special case where 𝑛 = 0, the semantics corresponds to 0 ∈ L(H (Δ,Δ′)) → H(Void), so
this may be implemented by a circuit that sends all input qubits to the flag register.

Now, consider 𝑛 > 0. The compiled circuit for T-Ctrl uses modified versions of its subcircuits.

We use Lemma K.10 to get a purified version of the circuit for 𝑒 with semantics J𝑒K : H(Γ,Δ) →
H(𝑇 ) ⊗ Hg. Here, Hg is some “garbage” Hilbert space containing vectors

{��𝑔𝜎,𝜏,𝑣〉 : 𝜎 ∈ V(Γ), 𝜏 ∈ V(Δ), 𝑣 ∈ V(𝑇 )
}

such that

J𝑒K |𝜎, 𝜏⟩ =
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣, 𝑣〉
for all 𝜎, 𝜏, 𝑣 .

The circuit below is too large to fit on a single page, so the dots denote where the two pieces

must fit together. All direct sums below are to be understood as being taken over the tree R
associated with the orthogonality judgment (Definition 7.1). We use the orthogonality circuit from

Appendix L.2.
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H(Γ) H(Γ)

Hg Hg

H(Δ) H(𝑇 )
⊕

𝑗 H(Γ𝑗 )

H(Δ)

⊕
𝑗 H(Γ𝑗 ,Δ,Δ′ ) ⊕

𝑗 (H(Γ𝑗 )⊗H(𝑇 ′ ) )

H(Γ) · · ·

𝑒

· · ·

Jortho𝑇
(
𝑒1, . . . , 𝑒𝑛

)
K

distrH(Δ)
⊕

𝑗 J𝑒
′
𝑗 K · · ·

H (Δ′)

H(Γ)

Hg ⊕
𝑗 H(Γ𝑗 )

H(𝑇 ) H(Δ)

⊕
𝑗 · · · H(𝑇 ′ )

· · · H (Γ)

· · ·

𝑒†

distr

Jortho𝑇
(
𝑒1, . . . , 𝑒𝑛

)
K†

erase

· · · H (𝑇 ′)
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|𝜎, 𝜏, 𝜏 ′⟩
∈ H (Γ,Δ,Δ′)

↦→ |𝜎, 𝜏, 𝜏, 𝜏 ′⟩
∈ H (Γ,Δ,Δ,Δ′)

↦→ |𝜎⟩ ⊗ J𝑒K |𝜎, 𝜏⟩ ⊗ |𝜏, 𝜏 ′⟩

= |𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣, 𝑣〉 ⊗ |𝜏, 𝜏 ′⟩

∈ H (Γ) ⊗ Hg ⊗ H(𝑇 ) ⊗ H (Δ,Δ′)

↦→ |𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣〉 ⊗ ©­«
⊕
𝑗 :R

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · J𝑒 𝑗 K† |𝑣⟩ª®¬ ⊗ |𝜏, 𝜏 ′⟩

= |𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣〉 ⊗ ©­«
⊕
𝑗 :R

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · 〈𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · ��𝜎 𝑗

〉ª®¬ ⊗ |𝜏, 𝜏 ′⟩

= |𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣〉 ⊗ ©­«
⊕
𝑗 :R

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · ��𝜎 𝑗

〉ª®¬ ⊗ |𝜏, 𝜏 ′⟩

∈ H (Γ) ⊗ Hg ⊗
⊕
𝑗 :R

H(Γ𝑗 ) ⊗ H (Δ,Δ′)

↦→ |𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣〉 ⊗ ©­«
⊕
𝑗 :R

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · ��𝜎 𝑗 , 𝜏, 𝜏
′〉ª®¬

∈ H (Γ) ⊗ Hg ⊗
⊕
𝑗 :R

(
H(Γ𝑗 ,Δ,Δ′)

)
↦→ |𝜎⟩ ⊗

∑︁
𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣〉 ⊗ ©­«
⊕
𝑗 :R

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · J𝑒′𝑗 K ��𝜎 𝑗 , 𝜏, 𝜏
′〉ª®¬
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|𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣〉
⊗ ©­«

⊕
𝑗 :R

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · ∑︁
𝑣′∈V(𝑇 ′ )

〈
𝜎 𝑗 , 𝑣

′�� J𝑒′𝑗 K ��𝜎 𝑗 , 𝜏, 𝜏
′〉 · ��𝜎 𝑗 , 𝑣

′〉ª®¬
= |𝜎⟩ ⊗

∑︁
𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣〉
⊗ ©­«

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · ∑︁
𝑣′∈V(𝑇 ′ )

〈
𝜎 𝑗 , 𝑣

′�� J𝑒′𝑗 K ��𝜎 𝑗 , 𝜏, 𝜏
′〉 · inj𝑗 ��𝜎 𝑗 , 𝑣

′〉ª®¬
∈ H (Γ) ⊗ Hg ⊗

⊕
𝑗 :R

(
H(Γ𝑗 ) ⊗ H (𝑇 ′)

)
↦→ |𝜎⟩ ⊗

∑︁
𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣〉
⊗ ©­«

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · injR𝑗 ��𝜎 𝑗

〉
⊗

∑︁
𝑣′∈V(𝑇 ′ )

〈
𝜎 𝑗 , 𝑣

′�� J𝑒′𝑗 K ��𝜎 𝑗 , 𝜏, 𝜏
′〉 · |𝑣 ′⟩ª®¬

∈ H (Γ) ⊗ Hg ⊗
⊕
𝑗 :R

H(Γ𝑗 ) ⊗ H (𝑇 ′)

↦→ |𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ · ��𝑔𝜎,𝜏,𝑣〉
⊗ ©­«

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · |𝑣⟩ ⊗ ∑︁
𝑣′∈V(𝑇 ′ )

〈
𝜎 𝑗 , 𝑣

′�� J𝑒′𝑗 K ��𝜎 𝑗 , 𝜏, 𝜏
′〉 · |𝑣 ′⟩ª®¬

∈ H (Γ) ⊗ Hg ⊗ H(𝑇 ) ⊗ H (𝑇 ′)

↦→ |𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩
⊗ ©­«

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · J𝑒K† ��𝑔𝜎,𝜏,𝑣, 𝑣〉 ⊗ ∑︁
𝑣′∈V(𝑇 ′ )

〈
𝜎 𝑗 , 𝑣

′�� J𝑒′𝑗 K ��𝜎 𝑗 , 𝜏, 𝜏
′〉 · |𝑣 ′⟩ª®¬

∈ H (Γ,Δ) ⊗ H (𝑇 ′)
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|𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩
⊗ ©­«

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · ∑︁
𝜏★

⟨𝜎, 𝜏★ | J𝑒K†
��𝑔𝜎,𝜏,𝑣, 𝑣〉 · |𝜏★⟩ ⊗ ∑︁

𝑣′∈V(𝑇 ′ )

〈
𝜎 𝑗 , 𝑣

′�� J𝑒′𝑗 K ��𝜎 𝑗 , 𝜏, 𝜏
′〉 · |𝑣 ′⟩ª®¬

∈ H (Γ,Δ) ⊗ H (𝑇 ′)

= |𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ ⟨𝜎, 𝜏 | J𝑒K† ��𝑔𝜎,𝜏,𝑣, 𝑣〉
⊗ ©­«

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ · |𝜏⟩ ⊗ ∑︁
𝑣′∈V(𝑇 ′ )

〈
𝜎 𝑗 , 𝑣

′�� J𝑒′𝑗 K ��𝜎 𝑗 , 𝜏, 𝜏
′〉 · |𝑣 ′⟩ª®¬

∈ H (Γ,Δ) ⊗ H (𝑇 ′)

↦→ |𝜎⟩ ⊗
∑︁

𝑣∈V(𝑇 )

〈
𝑔𝜎,𝜏,𝑣, 𝑣

�� J𝑒K |𝜎, 𝜏⟩ ⟨𝜎, 𝜏 | J𝑒K† ��𝑔𝜎,𝜏,𝑣, 𝑣〉
⊗ ©­«

𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ ⊗ ∑︁
𝑣′∈V(𝑇 ′ )

〈
𝜎 𝑗 , 𝑣

′�� J𝑒′𝑗 K ��𝜎 𝑗 , 𝜏, 𝜏
′〉 · |𝑣 ′⟩ª®¬

∈ H (Γ) ⊗ H (𝑇 ′)

T-PureApp: H(𝑇 )

H(Γ) H (Γ)

H (Δ) 𝑒 𝑓 H(𝑇 ′)

|𝜎, 𝜏⟩ ∈ H (Γ,Δ)
↦→ |𝜎⟩ ⊗ J𝑒K |𝜏⟩ ∈ H (Γ) ⊗ H (𝑇 )
↦→ |𝜎⟩ ⊗ J𝑓 KJ𝑒K |𝜏⟩ ∈ H (Γ) ⊗ H (𝑇 ′)

T-Mix:

H(Γ) H (Γ)

H (Δ) 𝑒 H(𝑇 )

|𝜎, 𝜏⟩⟨𝜎, 𝜏 ′ | ∈ L(H (Γ,Δ))
↦→ |𝜎⟩⟨𝜎 | ⊗ J𝑒K|𝜏⟩⟨𝜏 ′ |J𝑒K† ∈ L(H (Γ)) ⊗ L(H (𝑇 ))
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T-Discard:

H(Δ0)

H (Γ) Γ

H(Δ) 𝑒 H(𝑇 )

H (Δ0)

|𝜎, 𝜏, 𝜏0⟩⟨𝜎, 𝜏 ′, 𝜏 ′0 | ∈ L(H (Γ,Δ,Δ0))
↦→ |𝜎⟩⟨𝜎 | ⊗ tr( |𝜏0⟩⟨𝜏 ′0 |)J𝑒K( |𝜏⟩⟨𝜏 ′ |) ∈ L(H (Γ)) ⊗ L(H (𝑇 ))

T-MixedPair:

H(Δ)

H(Δ)

H(Γ) H (Γ)

H (Δ)
Γ ∥ Δ,Δ0 ⊩ 𝑒0 : 𝑇0

H(𝑇0)

H (Δ0)

Γ ∥ Δ,Δ1 ⊩ 𝑒1 : 𝑇1

H(𝑇1)

H (Δ1)

|𝜎, 𝜏, 𝜏0, 𝜏1⟩⟨𝜎, 𝜏 ′, 𝜏 ′0, 𝜏 ′1 | ∈ L(H (Γ,Δ,Δ0,Δ1))
↦→ |𝜎, 𝜏, 𝜏0, 𝜏, 𝜏1⟩⟨𝜎, 𝜏 ′, 𝜏 ′0, 𝜏 ′, 𝜏 ′1 |
= |𝜎⟩⟨𝜎 | ⊗ |𝜏, 𝜏0⟩⟨𝜏 ′, 𝜏 ′0 | ⊗ |𝜏, 𝜏1⟩⟨𝜏 ′, 𝜏 ′1 | ∈ L(H (Γ)) ⊗ L(H (Δ,Δ0)) ⊗ L(H (Δ,Δ1))
↦→ |𝜎⟩⟨𝜎 | ⊗ J𝑒0K

(
|𝜏, 𝜏0⟩⟨𝜏 ′, 𝜏 ′0 |

)
⊗ J𝑒1K

(
|𝜏, 𝜏1⟩⟨𝜏 ′, 𝜏 ′1 |

)
∈ L(H (Γ) ⊗ H (𝑇0 ⊗ 𝑇1))

T-Try:

H(𝑇 )⊕C
H(𝑇 )⊗(H(𝑇 )⊕C)⊕H(𝑇 )⊕C

H(𝑇 )⊗(H(𝑇 )⊕C)⊕H(𝑇 )

H(𝑇 )⊕C

H(𝑇 ) ⊕ C ⊕ C

H(Γ) H (Γ)

H (Δ0) CPTP(Δ0 ⊩ 𝑒0 : 𝑇 )
distr

left†

distr

H(𝑇 )

H (Δ1) CPTP(Δ1 ⊩ 𝑒1 : 𝑇 )

For brevity, define:

𝜌 ′
0

.

.= J𝜎 : Γ ∥ Δ0 ⊩ 𝑒0 : 𝑇 K(𝜌0)
𝜌 ′
1

.

.= J𝜎 : Γ ∥ Δ1 ⊩ 𝑒1 : 𝑇 K(𝜌1)
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Then, the circuit acts as follows:

𝜌0 ⊗ 𝜌1

↦→
(
𝜌 ′
0
⊕ (tr (𝜌0) − tr(𝜌 ′

0
))

)
⊗

(
𝜌 ′
1
⊕ (tr (𝜌1) − tr(𝜌 ′

1
))

)
↦→ 𝜌 ′

0
⊗

(
𝜌 ′
1
⊕ (tr (𝜌1) − tr(𝜌 ′

1
))

)
⊕ (tr (𝜌0) − tr(𝜌 ′

0
))

(
𝜌 ′
1
⊕ (tr (𝜌1) − tr(𝜌 ′

1
))

)
↦→ 𝜌 ′

0
⊗

(
𝜌 ′
1
⊕ (tr (𝜌1) − tr(𝜌 ′

1
))

)
⊕ (tr (𝜌0) − tr(𝜌 ′

0
))𝜌 ′

1

↦→ 𝜌 ′
0
⊗

(
𝜌 ′
1
⊕ (tr (𝜌1) − tr(𝜌 ′

1
)) ⊕ 0

)
+ 𝜌 ′

1

(
0 ⊕ 0 ⊕ (tr (𝜌0) − tr(𝜌 ′

0
))

)
↦→ tr (𝜌1) 𝜌 ′0 + (tr (𝜌0) − tr(𝜌 ′

0
))𝜌 ′

1

T-MixedApp: H(𝑇 )

H(Γ) H (Γ)

H (Δ) 𝑒 𝑓 H(𝑇 ′)

|𝜎, 𝜏⟩⟨𝜎, 𝜏 ′ | ∈ L(H (Γ,Δ))
↦→ |𝜎⟩⟨𝜎 | ⊗ J𝑒K ( |𝜏⟩⟨𝜏 ′ |) ∈ L(H (Γ)) ⊗ L(H (𝑇 ))
↦→ |𝜎⟩⟨𝜎 | ⊗ J𝑓 K

(
J𝑒K( |𝜏⟩⟨𝜏 ′ |)

)
∈ L(H (Γ)) ⊗ L(H (𝑇 ′))

T-Match:

This construction is similar to that of T-Ctrl, but it does not perform uncomputation and

instead discards quantum data. We use purified versions of the circuits for the 𝑒′𝑗 , obtaining

purify(𝑒′𝑗 ) : H(Γ, Γ𝑗 ,Δ,Δ1) → H(Γ, Γ𝑗 ) ⊗H (𝑇 ′) ⊗H𝑗 . We will still write it as J𝑒′𝑗 K where it is clear
from context we are referring to the purification. Here, H𝑗 is a “garbage Hilbert space” containing

vectors {��𝑔 𝑗,𝜎,𝜎 𝑗 ,𝜏,𝜏1,𝑣
′
〉
: 𝜎 ∈ V(Γ), 𝜎 𝑗 ∈ V(Γ𝑗 ), 𝜏 ∈ V(Δ), 𝜏1 ∈ V(Δ1), 𝑣 ′ ∈ V(𝑇 ′)

}
,

such that

J𝑒′𝑗 K
��𝜎, 𝜎 𝑗 , 𝜏, 𝜏1

〉
=

∑︁
𝑣′∈V(𝑇 ′ )

〈
𝑣 ′, 𝑔 𝑗,𝜎,𝜎 𝑗 ,𝜏,𝜏1,𝑣

′
�� J𝑒′𝑗 K ��𝜎, 𝜎 𝑗 , 𝜏, 𝜏1

〉
·
��𝑣 ′, 𝑔 𝑗,𝜎,𝜎 𝑗 ,𝜏,𝜏1,𝑣

′
〉
.

Note that unlike in T-Ctrl, we do not purify 𝑒 . As for T-Ctrl, all direct sums are to be understood

as being taken over the tree R associated with the orthogonality judgment.

H(Δ) H(𝑇 )
⊕

𝑗 H(Γ𝑗 )
⊕

𝑗 H(Γ,Γ𝑗 ,Δ,Δ1 )

H(Δ)

H(Γ)

distr

H(Δ)
𝑒

Jortho𝑇
(
𝑒1, . . . , 𝑒𝑛

)
K · · ·

H (Δ0)

H (Δ1)
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⊕
𝑗 H(Γ,Γ𝑗 ,Δ,Δ1 ) ⊕

𝑗 (H(Γ,Γ𝑗 )⊗H(𝑇 ′ )⊗H𝑗 )

⊕
𝑗

(
H(Γ𝑗 ) ⊗ H𝑗

)
distr

H(Γ)

· · ·
⊕

𝑗 purify(𝑒′𝑗 ) H (𝑇 ′)

|𝜎, 𝜏, 𝜏0, 𝜏1⟩⟨𝜎, 𝜏 ′, 𝜏 ′0, 𝜏 ′1 |
∈ L(H (Γ,Δ,Δ0,Δ1))

↦→ |𝜎, 𝜏, 𝜏0, 𝜏, 𝜏1⟩⟨𝜎, 𝜏 ′, 𝜏 ′0, 𝜏 ′, 𝜏 ′1 |
∈ L(H (Γ,Δ,Δ0,Δ,Δ1))

↦→ |𝜎⟩⟨𝜎 | ⊗ J𝑒K
(
|𝜎, 𝜏, 𝜏0⟩⟨𝜎, 𝜏 ′, 𝜏 ′0 |

)
⊗ |𝜏0, 𝜏, 𝜏1⟩⟨𝜏 ′0, 𝜏 ′, 𝜏 ′1 |

= |𝜎⟩⟨𝜎 | ⊗
∑︁

𝑣,𝑤∈V(𝑇 )
⟨𝑣 |

(
J𝑒K

(
|𝜎, 𝜏, 𝜏0⟩⟨𝜎, 𝜏 ′, 𝜏 ′0 |

) )
|𝑤⟩ · |𝑣⟩⟨𝑤 | ⊗ |𝜏, 𝜏1⟩⟨𝜏 ′, 𝜏 ′1 |

∈ L(H (Γ)) ⊗ L(H (𝑇 )) ⊗ L(H (𝑇 )) ⊗ L(H (Δ,Δ1))

↦→ |𝜎⟩⟨𝜎 | ⊗
∑︁

𝑣,𝑤∈V(𝑇 )
⟨𝑣 |

(
J𝑒K

(
|𝜎, 𝜏, 𝜏0⟩⟨𝜎, 𝜏 ′, 𝜏 ′0 |

) )
|𝑤⟩ ·

©­­­«
∑︁
𝑗,𝑘

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )
𝜎𝑘 ∈V(Γ𝑘 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ ⟨𝑤 | J𝑒 𝑗 K |𝜎𝑘⟩ · injR𝑗 J𝑒 𝑗 K† |𝑣⟩ ⟨𝑤 | J𝑒𝑘K injR†𝑘

ª®®®¬ ⊗ |𝜏, 𝜏1⟩⟨𝜏 ′, 𝜏 ′1 |

= |𝜎⟩⟨𝜎 | ⊗
∑︁

𝑣,𝑤∈V(𝑇 )
⟨𝑣 |

(
J𝑒K

(
|𝜎, 𝜏, 𝜏0⟩⟨𝜎, 𝜏 ′, 𝜏 ′0 |

) )
|𝑤⟩ ·

©­­­«
∑︁
𝑗,𝑘

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )
𝜎𝑘 ∈V(Γ𝑘 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ ⟨𝑤 | J𝑒 𝑗 K |𝜎𝑘⟩ · injR𝑗 |𝜎 𝑗 ⟩⟨𝜎𝑘 | injR†𝑘

ª®®®¬ ⊗ |𝜏, 𝜏1⟩⟨𝜏 ′, 𝜏 ′1 |

∈ L(H (Γ)) ⊗
⊕
𝑗 :R

L(H (Γ𝑗 )) ⊗ L(H (Δ,Δ1))

↦→
∑︁

𝑣,𝑤∈V(𝑇 )
⟨𝑣 |

(
J𝑒K

(
|𝜎, 𝜏, 𝜏0⟩⟨𝜎, 𝜏 ′, 𝜏 ′0 |

) )
|𝑤⟩ ·

©­­­«
∑︁
𝑗,𝑘

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )
𝜎𝑘 ∈V(Γ𝑘 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ ⟨𝑤 | J𝑒 𝑗 K |𝜎𝑘⟩ · injR𝑗 |𝜎, 𝜎 𝑗 , 𝜏, 𝜏1⟩⟨𝜎, 𝜎𝑘 , 𝜏 ′, 𝜏 ′1 | inj
R†
𝑘

ª®®®¬
∈

⊕
𝑗 :R

L(H (Γ, Γ𝑗 ,Δ,Δ1))
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↦→
∑︁

𝑣,𝑤∈V(𝑇 )

∑︁
𝑣′,𝑤′∈V(𝑇 ′ )

⟨𝑣 |
(
J𝑒K

(
|𝜎, 𝜏, 𝜏0⟩⟨𝜎, 𝜏 ′, 𝜏 ′0 |

) )
|𝑤⟩ ·

·
∑︁
𝑗,𝑘

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )
𝜎𝑘 ∈V(Γ𝑘 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ ⟨𝑤 | J𝑒 𝑗 K |𝜎𝑘⟩ ·
〈
𝑣 ′, 𝑔 𝑗,𝜎,𝜎 𝑗 ,𝜏,𝜏1,𝑣

′
�� J𝑒′𝑗 K ��𝜎, 𝜎 𝑗 , 𝜏, 𝜏1

〉
·

·
〈
𝜎, 𝜎𝑘 , 𝜏

′, 𝜏 ′
1

�� J𝑒′
𝑘
K†

��𝑤 ′, 𝑔𝑘,𝜎,𝜎𝑘 ,𝜏 ′,𝜏 ′1,𝑤′
〉
· injR𝑗 |𝜎, 𝜎 𝑗 , 𝑣

′, 𝑔 𝑗,𝜎,𝜎 𝑗 ,𝜏,𝜏1,𝑣
′⟩⟨𝜎, 𝜎𝑘 ,𝑤 ′, 𝑔𝑘,𝜎,𝜎𝑘 ,𝜏 ′,𝜏 ′1,𝑤′ | injR†

𝑘

∈
⊕
𝑗 :R

L(H (Γ, Γ𝑗 ) ⊗ H (𝑇 ′) ⊗ H𝑗 )

↦→ |𝜎⟩⟨𝜎 | ⊗
∑︁

𝑣,𝑤∈V(𝑇 )

∑︁
𝑣′,𝑤′∈V(𝑇 ′ )

⟨𝑣 |
(
J𝑒K

(
|𝜎, 𝜏, 𝜏0⟩⟨𝜎, 𝜏 ′, 𝜏 ′0 |

) )
|𝑤⟩ ·

·
∑︁
𝑗,𝑘

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )
𝜎𝑘 ∈V(Γ𝑘 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ ⟨𝑤 | J𝑒 𝑗 K |𝜎𝑘⟩ ·
〈
𝑣 ′, 𝑔 𝑗,𝜎,𝜎 𝑗 ,𝜏,𝜏1,𝑣

′
�� J𝑒′𝑗 K ��𝜎, 𝜎 𝑗 , 𝜏, 𝜏1

〉
·

·
〈
𝜎, 𝜎𝑘 , 𝜏

′, 𝜏 ′
1

�� J𝑒′
𝑘
K†

��𝑤 ′, 𝑔𝑘,𝜎,𝜎𝑘 ,𝜏 ′,𝜏 ′1,𝑤′
〉
· |𝑣 ′⟩⟨𝑤 ′ | ⊗ inj

R
𝑗 |𝜎 𝑗 , 𝑔 𝑗,𝜎,𝜎 𝑗 ,𝜏,𝜏1,𝑣

′⟩⟨𝜎𝑘 , 𝑔𝑘,𝜎,𝜎𝑘 ,𝜏 ′,𝜏 ′1,𝑤′ | injR†
𝑘

∈ L(H (Γ)) ⊗ L(H (𝑇 ′)) ⊗
⊕
𝑗 :R

L(H (Γ𝑗 ) ⊗ H𝑗 )

↦→ |𝜎⟩⟨𝜎 | ⊗
∑︁

𝑣,𝑤∈V(𝑇 )

∑︁
𝑣′,𝑤′∈V(𝑇 ′ )

⟨𝑣 |
(
J𝑒K

(
|𝜎, 𝜏, 𝜏0⟩⟨𝜎, 𝜏 ′, 𝜏 ′0 |

) )
|𝑤⟩ ·

·
𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J𝑒 𝑗 K† |𝑣⟩ ⟨𝑤 | J𝑒 𝑗 K
��𝜎 𝑗

〉
·
〈
𝑣 ′, 𝑔 𝑗,𝜎,𝜎 𝑗 ,𝜏,𝜏1,𝑣

′
�� J𝑒′𝑗 K ��𝜎, 𝜎 𝑗 , 𝜏, 𝜏1

〉
·

·
〈
𝜎, 𝜎 𝑗 , 𝜏

′, 𝜏 ′
1

�� J𝑒′𝑗 K† ��𝑤 ′, 𝑔 𝑗,𝜎,𝜎 𝑗 ,𝜏
′,𝜏 ′

1
,𝑤′

〉
· |𝑣 ′⟩⟨𝑤 ′ |

= |𝜎⟩⟨𝜎 | ⊗
∑︁

𝑣∈V(𝑇 )
⟨𝑣 |

(
J𝜎 : Γ ∥ Δ,Δ0 ⊩ 𝑒 : 𝑇 K

(
|𝜏, 𝜏0⟩

〈
𝜏 ′, 𝜏 ′

0

��) ) |𝑣⟩ · 𝑛∑︁
𝑗=1

∑︁
𝜎 𝑗 ∈V(Γ𝑗 )

〈
𝜎 𝑗

�� J∅ : ∅ ∥ Γ𝑗 ⊢ 𝑒 𝑗 : 𝑇 K† |𝑣⟩ ·

· J𝜎, 𝜎 𝑗 : Γ, Γ𝑗 ∥ Δ,Δ1 ⊩ 𝑒′𝑗 K
(
|𝜏, 𝜏1⟩⟨𝜏 ′, 𝜏 ′1 |

)
∈ L(H (Γ)) ⊗ L(H (𝑇 ′))
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