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Property-based testing is a mainstay of functional programming, boasting a rich literature, an enthusiastic user
community, and a plethora of tools — so many, indeed, that new users may have difficulty choosing. Moreover,
any given framework may support a variety of strategies for generating test inputs; even experienced users
may wonder which works best in a given situation. Sadly, the PBT literature, though long on creativity, is
short on rigorous comparisons to help answer such questions.

We present Etna, a platform for empirical evaluation and comparison of property-based testing techniques.
Etna incorporates a number of popular PBT frameworks and testing workloads from the literature, and its
extensible architecture makes adding new ones easy, while handling the technical drudgery of performance
measurement. To illustrate its benefits, we use Etna to carry out several experiments with popular PBT
approaches in both Coq and Haskell.

1 INTRODUCTION
Haskell’s QuickCheck library popularized property-based testing (PBT), which lets users test ex-
ecutable specifications of their programs by checking them on a large number of inputs. In fact,
QuickCheck made PBT so popular that Claessen and Hughes’s seminal paper [2000] is the most
cited ICFP paper of all time... by a factor of two, according to the ACM Digital Library. PBT
tools can now be found in languages from OCaml [Cruanes 2017; Dolan 2017] and Scala [Nilsson
2019] to Erlang [Arts et al. 2008; Papadakis and Sagonas 2011] and Python [MacIver 2016], not
to mention proof assistants like Coq [Lampropoulos and Pierce 2018], Agda [Lindblad 2007], and
Isabelle [Bulwahn 2012a].

Many aspects of PBT impact its effectiveness, from the properties themselves [Hughes 2019] to
counterexample minimization [Maciver and Donaldson 2020], but arguably the most crucial one
is the algorithm for generating test inputs. Many papers citing QuickCheck retain its distinctive
style of random test-case generation, but many other options have been explored. In particular,
enumerative PBT has also become a staple in the functional programming community [Braquehais
2017; Runciman et al. 2008], and tools for feedback-based PBT are gaining ground [Dolan 2017;
Lampropoulos et al. 2019; Löscher and Sagonas 2017]. Each of these approaches comes with benefits
and tradeoffs, and choosing one over another can make a big difference on testing effectiveness.
Even after selecting a generation style — say, random PBT — one may be left with quite a few

options of framework, each with its own unique style. In Haskell, for example, both QuickCheck
and Hedgehog [Stanley 2019] are quite popular. And even after selecting a framework — say,
QuickCheck — there are yet more options for choosing a specific generation strategy. Tools like
generic-random [Xia 2018] and DraGEN [Mista and Russo 2021] can derive QuickCheck generators
from type information, offering a quick and accessible entrypoint to PBT, but their effectiveness
suffers when inputs need to satisfy more complex semantic constraints. Alternatively, one can
write a bespoke generator that is “correct by construction,” producing only valid test inputs. Such
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bespoke generators can sometimes become quite sophisticated [Hritcu et al. 2016; Midtgaard et al.
2017; Pałka et al. 2011]. And there are other options: for example, QuickChick, Coq’s variant of
QuickCheck, can derive specialized generators for free from specifications expressed as inductive
relations [Paraskevopoulou et al. 2022]. Nuances of the properties under test may make strategies
more or less preferable, and considerable experience may be required to make a good choice.
Moreover, even after selecting a particular way of using the tool — say, writing a bespoke

generator — there are yet more options: a given generator can typically be tuned to produce
different sizes and shapes of data. For example, QuickCheck generators can be parameterized both
globally by a size parameter and locally by choices like numeric weights on the arguments to
various combinators.

In the existing literature, there are plenty of performance evaluations, but a dearth of comparisons

across these dimensions. New tools are typically evaluated on just one or two case studies, often
showcasing incomparable measures of effectiveness. So how is a PBT user supposed to make
sense of all these options? How is a tool designer supposed to measure success? How can we turn
property-based testing from an art to a science?

Answering these questions is the goal of this experience report. Our contributions are:
• We present Etna, an extensible platform for evaluating generation techniques for PBT, with
generic support for measuring performance and presenting results (§2).

• We populate Etna with five testing workloads from the literature, presenting a range of
bug-finding challenges, with PBT frameworks in both Haskell and Coq, and with various
strategies for using each framework (§3).

• We report on our experiences using Etna to explore a number of questions about PBT. The
answers generally lend weight to commonly held beliefs, but add useful nuance and suggest
improvements to existing processes and tools (§4 and §5).

We discuss related and future work (§6).

2 PLATFORM DESIGN
Why are there so many generation strategies for PBT? In part, because there are many ways of
dealing with properties with preconditions. Consider binary search trees, where the value at each
node is greater than everything to its left and less than everything to its right.

data Tree k v = Leaf | Node (Tree k v) k v (Tree k v)
isBST :: Tree k v -> Bool
insert :: k -> Tree k v -> Tree k v

What properties should we expect to hold for operations on BSTs? Hughes thoroughly answers
this question in his guide to writing properties of pure functions [2019]. For instance, one desirable
property is that if we insert a key into a valid binary search tree, then it should remain a valid
binary search tree:

prop_InsertValid :: Tree Int Bool -> Int -> Property
prop_InsertValid t x = isBST t ==> isBST (insert x t)

Here ==> encodes a precondition. That is, the property isn’t expected to hold for an arbitrary binary
tree t and an arbitrary key k, but only when the latter satisfies the isBST predicate.
How should we generate data for such properties? A simple approach is to straightforwardly

follow the structure of the types to generate arbitrary trees and filter out the ones that are not BSTs
before checking that inserting an element yields a BST. While simplistic, this approach works well
in some circumstances. In fact, for the binary search tree example, such type-driven approaches can
rapidly find all bugs introduced in Hughes’s guide to writing properties of pure functions [2019].
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But this generate-and-filter approach breaks down with “sparser” preconditions; for instance, valid
red-black trees are harder to generate at random than valid BSTs, so type-driven strategies work
less well (see §4 and §5). For yet sparser preconditions, such as C programs with no undefined
behaviors [Yang et al. 2011], they are hopeless. The completely opposite approach is to require
users to write bespoke generators: programs that produce inputs satisfying the precondition by
construction. Such programs can be extremely effective in finding bugs, but also extremely difficult
to write. A well-crafted such generator can in fact be a significant research result: such is the
case for many well-typed term generators in the last decade [Hoang et al. 2022; Midtgaard et al.
2017; Pałka et al. 2011]. Naturally, there are also approaches in the middle. For instance, some use
the structure of the precondition to produce valid data directly [Bulwahn 2012b; Claessen et al.
2014; Fetscher et al. 2015; Lampropoulos et al. 2017, 2018], while others leverage feedback to guide
generation towards valid or otherwise interesting inputs [Lampropoulos et al. 2019; Löcher and
Sagonas 2018; Löscher and Sagonas 2017].

2.1 How to Evaluate Generators
How do we measure the effectiveness of a generator? The software testing literature offers two
main answers: code coverage and mutation testing. Code coverage is popular, but problematic: it is
well known that higher coverage does not always translate to better bug finding [Gopinath et al.
2014; Klees et al. 2018]. The alternative, mutation testing [Jia and Harman 2011], measures the
effectiveness of testing by artificially injecting mutations to the system under test and checking if
testing is able to detect them. Mutations in the literature [Hazimeh et al. 2020; Hritcu et al. 2016;
Klees et al. 2018; Zhang et al. 2022] fall on a spectrum from manually sourced to automatically
synthesized. We opt for the former, allowing us to more readily maintain ground truth and ensure
that every mutant violates some aspect of the property specification. Etna supports a terse syntax
for incorporating these mutants into the systems under test. §3 details the case studies evaluated in
this paper.

2.2 Terminology
Our mutation-testing based evaluation is built upon tasks: a mutant-property pair where the
mutant causes the property to fail. As any given program can give rise to multiple tasks — it
might need to satisfy multiple properties or be subjected to multiple mutants — we organize tasks
into workloads. Each workload comes with several components: data type definitions; variant
implementations of functions using these types; and a property specification of these functions.

We call a PBT paradigm at the level of a library a framework, which should contain functions
for (a) constructing properties, (b) constructing generators, and (c) running tests. For instance,
QuickCheck, QuickChick, SmallCheck and LeanCheck are all examples of frameworks. And we call
a PBT paradigm at the level of how to use a framework to write generators a strategy. Examples
of such strategies include type-based random generation, manually written bespoke generators, or
exhaustive enumeration of the input space.

2.3 Architecture
Etna is designed to be an extensible platform that flexibly accommodates newworkloads, strategies,
frameworks, and languages. At its core is an experiment driver that provides three main pieces
of functionality: (a) toggling between variant implementations in a directory of workloads; (b)
compiling and running each strategy on each task; and (c) analyzing the results.
The driver is implemented as a Python library and is run via an experiment script. An example

experiment script can be found in Appendix A. If a user simply hopes to replicate our experiments,
they can use any of the example scripts provided in our artifact; if they want to run their own, they
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can adapt one of the existing scripts. Each experiment script calls into the driver, producing some
data, and then processes that data via tools like Pandas [pandas 2023] and Plotly [Plotly 2023].

To add a new workload, the user implements the system under test just as they would ordinary
code in that language. The user can then encode mutants via special comment syntax embedded
within the implementation and encode properties using provided constructors. To add a new
strategy, the user instantiates per-framework combinators with their custom approach. For example,
QuickCheck strategies can provide Arbitrary instances. To add a new framework, the user can
connect the standardized language infrastructure with the specifics of the framework’s test runner.
For example, this may involve transforming our property types to work with their precondition
combinators and transforming their outputs to align with our result types.
To add a new language, the user only needs to implement an adaptor that tells the driver

about directory structure and compilation command and some language-specific infrastructure for
capturing results. The adaptors are written in Python and designed to be simple to implement and
to maximize reuse of infrastructure between languages. Test results are produced in a standardized
JSON output format, which allows for unified analysis across all languages.

2.4 Analysis and Presentation
Though Etna supports customizable experi-
ments, we choose a standard set of defaults
for the experiments in this paper. We run each
strategy on each task for a set amount of trials
(10 unless otherwise specified) and with a set timeout (60 seconds). We then measure if the strategy
was able to solve the task, i.e. find the injected bug in all trials within the given time frame.

Our first attempts at presenting this data were hard to interpret: what does it mean, for example,
if one strategy takes an average of two seconds and the other an average of three? Rather than
present a slew of raw numbers, we wanted a data representation that captures a user’s experience
of interacting with PBT tools, so that visual differences in the representation correspond to tangible
differences in performance. The figure above demonstrates our solution: a task bucket chart. For
every strategy we classify tasks ranging from “solved instantly” to “unsolved”, depicted with
progressively lighter shades. For example, for the strategy/workload combination in the figure, 14
tasks are solved very quickly (the darkest shade) while four are not solved at all (the lightest).

In case a task bucket chart does not show enough detail, especially in head-to-head comparisons,
we also support statistical analyses like Mann–Whitney U tests1 (see §4.1).

3 POPULATING THE PLATFORM
We have integrated a number of PBT frameworks and workloads into Etna, for our own use in §4
and §5 and for potential users to use and compare against.

3.1 Languages and Frameworks
Haskell is an obvious starting point: as the language that hosts QuickCheck, it is the lingua
franca of PBT research. We focus on three Haskell frameworks: QuickCheck, of course; Small-
Check [Runciman et al. 2008], a competitor to QuickCheck that does enumerative testing; and
LeanCheck [Braquehais 2017], a more modern enumerative framework.
Our second language of choice is Coq. While Haskell is blessed with many PBT frameworks,

PBT in Coq is built on a single framework: QuickChick [Lampropoulos and Pierce 2018]. However,

1The Mann–Whitney U test is a nonparametric test that compares data samples from two different distributions. We use it
here because it makes no assumptions about the distributions being compared.

4



Etna ICFP’23, September 4–9, 2023, Seattle, WA, USA

QuickChick is a rich ecosystem that supports a variety of different strategies for input genera-
tion [Lampropoulos 2018; Lampropoulos et al. 2019, 2018], so there is plenty to study and compare.
Etna’s extensible design means that adding new languages is straightforward; we discuss

languages that we plan to add to the platform in §6.

3.2 Workloads
Our initial set of workloads is drawn from three application domains that are of practical interest to
the functional programming community and that have featured prominently in the PBT literature.
These workloads feature in the following sections’ experiments, although not every workload is
used for every experiment.
Data Structures. The first workload focuses on a functional data structure that is ubiquitous in

the literature: binary search trees. Multiple property-based testing papers have focused on binary
search tree generation, including John Hughes’s How to Specify It! [2019], an extended introduction
to specifying properties using QuickCheck. Our BST workload ports the mutations and properties
from that paper. The second workload focuses on another popular functional data structure, red-
black trees, including self-balancing insertion and deletion operations, that are notoriously easy to
get wrong. Red-black trees have also been studied in the property-based testing literature [Klein
and Findler 2009; Lampropoulos et al. 2017; Mista and Russo 2019; Runciman et al. 2008]. Our RBT
workload combines the BST mutants with additional mutants that focus on potential mistakes
when balancing or coloring the tree.

Lambda Calculi and Type Systems. The third workload is based around a DeBruijn index based
implementation of the simply typed lambda calculus with booleans. Bespoke generators for pro-
ducing well-typed lambda terms is a well studied problem in the literature [Midtgaard et al. 2017;
Pałka et al. 2011], while the mutations for STLC included in our case study are drawn from the
appropriate fragment of a System F case study [Goldstein et al. 2021b], dealing mostly with mistakes
in substitution, shifting, and lifting. For a more complicated fourth workload revolving around
calculi and type systems, we turn to the full case study of [Goldstein et al. 2021b] and extend it with
subtyping. This allows for significantly more complex errors to be injected (such as those dealing
with type substitution, shifting, or lifting), while bespoke generators for System F have been the
subject of recent work [Goldstein et al. 2021b; Hoang et al. 2022] and can be straightforwardly
extended to handle subtyping.

Security. The fifth and final workload focuses on a security domain: information flow control. This
case study, introduced by Hritcu et al. [2013, 2016], explores the effectiveness of various bespoke
generators for testing whether low-level monitors for abstract machines enforce noninterference:
whether differences in secret data can become publicly visible through execution. Violations in
the enforcement policies are introduced by systematically weakening security checks or taint
propagation rules, exploring all possible ways of introducing such violations.

4 EXPERIMENTS: HASKELL
We next describe our experiments using Etna with Haskell frameworks.

4.1 Comparing Frameworks
In the first experiment, we assess the “out of the box” bug-finding abilities of three Haskell frame-
works — QuickCheck, SmallCheck, and LeanCheck. We examine four strategies. For the bespoke
strategy, we manually write a QuickCheck generator that always produces test inputs that satisfy
the property’s precondition. This serves as a “topline” for the other strategies: a high-effort gener-
ator that solves all of the tasks easily. The other three strategies — one per framework — are all
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naive. The QuickCheck strategy uses the generic-random library to derive its generator automati-
cally, with constructors chosen at each step with uniform probability and a size parameter that
decreases on recursive calls to ensure termination. For the enumerative frameworks, SmallCheck
and LeanCheck, we use combinators that follow the type structure.
We evaluate these strategies against four workloads: binary-search trees (BST), red-black trees

(RBT), the simply-typed lambda calculus (STLC), and System F with subtyping (F<:), with precondi-
tions of varying density.

Results.We visualize the results of this experiment in Figure 1. Some points to note...
The bespoke strategy outperforms the naive strategies along multiple axes. For example, looking

at the naive QuickCheck strategy (the others are similar), the bespoke strategy solved all tasks,
while the naive strategy failed to solve 43 tasks. Among tasks that both strategies solved, using a
Mann–Whitney U test with 𝛼 = 0.05, we find that the bespoke strategy’s average time to solve a
task was (statistically) significantly lower in 83 out of 124 tasks and the average valid inputs to
solve a task were lower for 89 out of 124 tasks. That is, the bespoke strategy found more bugs, more
quickly, and with better quality tests.
Between the two enumeration frameworks, LeanCheck substantially outperforms SmallCheck on

these workloads. LeanCheck had an 82% solve rate, while SmallCheck’s was only 35%. On one BST
task, LeanCheck found the bug in about a hundredth of a second on average, while SmallCheck
required 26 seconds. One reason for these differencesmay be that SmallCheck attempts to enumerate
larger inputs much earlier. In the first thousand binary trees, SmallCheck produces trees with up to
ten nodes, while LeanCheck only reaches four nodes. Unsurprisingly, it is harder for larger trees
to satisfy the BST invariant — only 1% of these thousand SmallCheck trees are valid, compared
to 13% of the LeanCheck trees. And across all workloads, we can calculate the rate at which they
enumerate test inputs, by aggregating over the tasks that they both solved and dividing the total
number of tests by the total time spent. We find that LeanCheck produces over a hundred times
more tests per second than SmallCheck.

LeanCheck also outperforms naive QuickCheck. It is illuminating to consider partially solved tasks,
where the bug was found in at least one trial and not found in at least one trial. There is one
such task for LeanCheck and 14 for QuickCheck. For LeanCheck’s partially solved task, the inputs
required are the same for each trial, but the time fluctuates between 55 and 65 seconds. That is,
this is a situation where a task nears — and sometimes exceeds — what LeanCheck can reach with
the one minute time limit. QuickCheck’s partially solved tasks are also interesting. Of the 13 that
LeanCheck solves but QuickCheck does not, 10 are partially solved by QuickCheck. This suggests
that there are situations where a deterministic approach may be more reliable than a random
alternative: LeanCheck solves these tasks consistently and relatively quickly, while QuickCheck
sometimes takes less than a second, sometimes nearly a minute, and sometimes times out.

4.2 Exploring Sized Generation
We next explore the sensitivity of bug-finding to various parameters, starting with input size.

A significant part of generator tuning is ensuring that the generated inputs are well sized. Con-
ventional wisdom in random testing posits that there is a “combinatorial advantage” to testing with
large inputs, since they can exercise many program behaviors at once; tools like QuickCover [Gold-
stein et al. 2021a] capitalize on this notion to make testing more efficient. But are large inputs
always better? We used our BST workload to investigate.

We conducted this experiment on the QuickCheck framework, using a bespoke strategy to focus
attention on the quality of the distribution of valid inputs. We used a generator from [Hughes
2019], which generates a list of values and then inserts each value into the tree, because it gives
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(a) BST (b) RBT

(c) STLC (d) F<:

Fig. 1. Effectiveness of Haskell generation strategies on four workloads.

= NaiveQuickCheck, = Naive LeanCheck, = Naive SmallCheck, = BespokeQuickCheck.

precise control over final tree sizes. We choose the keys for a 𝑛-node tree from a range of integers 1
to 2𝑛. This range is large enough to allow for sufficient variety in shape and content but not so
large that a randomly generated key is unlikely to be in the tree.

We then measured the bug-finding effectiveness of the generator at different sizes 𝑛. Thanks to
Etna’s flexibility, we could vary the size in the script and otherwise treat this experiment as we
would any other where we wanted to compare several strategies.

Results. Figure 2 plots the size of the tree versus the average number of inputs to solve a task;
each trace represents one task. Some noteworthy traces, highlighted in black, are discussed below.

Fig. 2. Number of generated inputs (averaged over 100

trials) to solve each BST task, as the size of the inputs

increases from three to 30 nodes.

Larger trees can be worse for bug-finding,

for properties that rely on dependencies between

their inputs.We found that, for BST, small trees
were generally sufficient to find bugs, and per-
formance got significantly worse for some tasks
as trees got larger.

For example, task #1, which has the steepest
upward curve, involves a mutant where the
delete function fails to remove a key unless that
tree happens to be the root. The property takes
one tree and two keys as inputs and checks that
removing the keys in either order leads to the
same result. Together, these mean that the task
is only solvable when one key k is the root of
the tree and the other key k’ becomes the root
after deleting k. The probability of satisfying
this condition decreases as the size of the tree
increases, so larger trees take more inputs to
solve this task.
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Task #2 is a similar story. It takes a tree and two key-value pairs; this time, the task is only
solvable when the two keys are the same (and the two values are different), a probability that is
inversely proportional to the size of the tree. These two tasks demonstrate situations where the
inputs to a property need to be related in a mutant-specific way, and large trees are less likely to
satisfy this dependency relationship.

Not all tasks with dependencies between their inputs are harder to solve with larger trees. Unlike #1
and #2, the curve for task #3 is mostly flat, even though it has a similar dependency. The mutant
here causes the union operation to fail by occasionally preferring the wrong value if both trees
contain the same key; the property takes a key k and two trees and checks that k exists in the union
of the trees when it exists in either tree. Since this mutant causes problems with keys that appear
in both trees, the property only fails when k is in the input trees. That is, there is a dependency
between the inputs, but this dependency does not scale with the size of the tree.

Discussion.We have seen that larger inputs sometimes not only fail to provide a combinatorial
advantage but in fact can provide a dependency disadvantage. The size of the main input — in
this case, the tree — cannot be evaluated in a vacuum. Instead, the particulars of the mutant and
property can lead to dependencies between the property inputs that must be satisfied in order to
detect the mutant. Our size exploration is thus a cautionary tale: PBT users should not naively
expect that larger inputs are better, especially for properties with multiple inputs.
This exploration suggests a few recommendations for improving both testing frameworks

and individual users’ choices of properties. (1) Do not treat property inputs as independent. The
difficulties with the above properties arise, in part, because QuickCheck automates generation of
multiple inputs by assuming that each input can be generated independently — but treating inputs
independently can lead to unintuitive testing performance. Frameworks like Hedgehog explicitly
avoid introducing a generator typeclass so as to force users to build generators by hand; our results
lend credence to that design choice. (2) Think carefully about properties with multiple inputs. Testers
should prefer properties with fewer inputs where possible. When this is infeasible, testers should
think carefully about potential interactions between their property’s inputs and design generators
that take those interactions into account.

4.3 Enumerator Sensitivity
Papers about enumeration frameworks sometimes speak of enumeration as a kind of exhaustive
testing — validating the program’s behavior within a “small scope” [Andoni et al. 2002]. But realistic
testing budgets often mean that exhausting all inputs up to some interesting size or depth is not
possible: enumeration is expensive. Thus, the actual performance of enumeration frameworks like
SmallCheck and LeanCheck is impacted by the specific order in which values are enumerated. In
this section we examine some factors that, perhaps unexpectedly, impact bug-finding performance.

There are many axes along which order could vary. We have explored two: the order of the inputs
to each property and the order of constructors in an algebraic data type. We focus our remarks
here on the former and relegate more detailed data for both to Appendix B.

We conduct this experiment on both SmallCheck and LeanCheck, using the two tree workloads —
BST and RBT — since many of their properties have multiple inputs. One enumeration strategy
uses the default properties, with the trees passed in first, and one uses properties where the trees
are last — for example, (Tree, Tree, Int) vs. (Int, Tree, Tree).

Results. We count the number of tasks that are solved by the same framework under exactly
one of the two orderings. For LeanCheck, the tree-last strategy solved one additional task that
the tree-first strategy did not (completing in about 38 seconds instead of timing out at 60). For
SmallCheck, the tree-last strategy solved 17 more tasks than tree-first, taking between 0.002 and 7
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seconds. The low end is especially remarkable: simply by enumerating (Int, Tree, Tree)s rather than
(Tree, Tree, Int)s, SmallCheck finds a counterexample almost instantaneously instead of timing out.

Discussion. A deeper dive into the enumeration frameworks to explore these differences fully
would be very worthwhile, but what jumps out even from these simple experiments is the question
of sensitivity. The potentially pivotal role of enumeration order in the success or failure of these
strategies means that users of these enumerative frameworks need to be careful of configuration
settings that would be immaterial in their random counterparts. As a meta point, we put the tree
data types at the front of each property as a matter of convention; it was not until much later that
we realized the inadvertent effect on the performance of the enumerators!

5 EXPERIMENTS: COQ
After focusing on the multi-framework landscape of Haskell in the previous section, we now
turn our attention to the single-framework but multi-strategy landscape in Coq. As discussed in
§3.1, property-based testing in Coq revolves around QuickChick [Lampropoulos 2018], which,
in addition to the type-based and bespoke strategies that we explored in Haskell, provides two
additional options: a specification-driven strategy that derives correct-by-construction generators
from preconditions in the form of inductive relations [Lampropoulos et al. 2018] and a type-driven
fuzzer strategy that combines type-based generation with mutation informed by AFL-style branch
coverage to guide the search toward interesting parts of the input space [Lampropoulos et al. 2019].
Both papers exemplify the lack of performance comparisons across approaches discussed in

the introduction. First, Lampropoulos et al. [2018] is evaluated in a toy information flow control
example, where only the throughput of generators is measured against that of a bespoke generator;
there is no measurement of the effectiveness of the strategy in finding bugs. On the other hand,
FuzzChick [Lampropoulos et al. 2019] is evaluated in the more realistic IFC workload of Hritcu
et al. [2016] that we will reuse later in this section, with systematically injected mutations that
break the enforcement mechanism of a dynamic monitor. Still, multiple aspects of their strategies
were left unevaluated, including their performance on any other workload.

5.1 Comparison of Fuzzers, Derived Generators, and Handwritten Generators
We aim to fill the evaluation gaps described above. How do QuickChick’s newer strategies com-
pare with the more established bespoke and type-based ones? In particular, are they effective at
uncovering bugs across disparate workloads?
We again use the BST, RBT, and STLC workloads, along with a more complex case study, IFC,

pulled from the FuzzChick paper. For the first three case studies, inductively defined specifications
are widely available (e.g. in Software Foundations [Pierce 2018]); for the latter, such specifications
do not exist, so the specification-driven generators of Lampropoulos et al. does not apply.

Results. In Figure 3 we visualize the results of the experiments with a task bucket chart. Results
for the simple BST workload (Figure 3a) establish a baseline level of confidence for all four methods,
as they are all able to solve most tasks quickly. Indeed, most of the tasks are solved by all methods
within 0.1 seconds (the darkest color), with the exception of the type-based fuzzer, which falls short
on a few tasks.

Specification-derived strategies are on par with bespoke ones. In the harder RBT workload, with its
much more complex invariant, there is a clear performance gap between type-driven strategies
(type-based generator and type-based fuzzer) and precondition-driven methods (specification-based
generator and bespoke generator). Precondition-driven methods are able to solve more tasks under
0.1 seconds than type-driven methods are able to solve within a 60 second timeout. The type-based
generator fails to solve eight tasks, and the type-based fuzzer fails to solve 14. The bespoke generator
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(a) Binary Search Tree (b) Red-Black Tree

(c) Simply-Typed Lambda Calculus (d) Information Flow Control

Fig. 3. Effectiveness of Coq generation strategies on four workloads. = Type-based generator, = Type-

based fuzzer, = Specification-based generator, = Variational fuzzer ((d) only), = Bespoke generator.

solves all tasks in under ten seconds, as does the specification-based generator with the exception
of one unsolved task. We see a similar pattern in the STLC workload, with the precondition-driven
methods outperforming the type-driven ones.

Fuzzers exhibit more variance but outperform type-driven methods for sparse preconditions. For the
IFC workload, the only precondition-driven strategy is the bespoke generator, which emerges as a
clear winner: noninterference is a property with a very sparse precondition, and type-based methods
are basically unable to generate valid inputs. For this particular workload, we included another
fuzzing variant borrowed from the original paper that introduced FuzzChick [Lampropoulos et al.
2019] to strengthen the connection to the existing literature: rather than generating a pair of input
machines completely at random and then fuzzing the pair (as in the type-based fuzzer approach),
we generate one input machine and copy it to create a pair that is indistinguishable by default.
The two fuzzers, type-based fuzzer and variational fuzzer, have a clear advantage over the pure
type-based generation approach: the ability to guide generation allows fuzzers to discover parts of
the input space that naive type-based generation are simply unable to reach.

Fig. 4. Tasks solved within the timeout in one or more

trials. Empty = Type-based generator. = Type-based

fuzzer, = Variational fuzzer, = Bespoke generator.

Yet fuzzers are not reliable in this sense, as
Figure 4 shows: if we include partially solved

tasks, fuzzers outperform than their genera-
tor counterparts. This further clarifies the pic-
ture painted by the first set of comparisons.
Fuzzers may get stuck following program paths
that will not lead to interesting revelations,
but sometimes discover paths that a traditional
type-based generator could never hope to reach.
In particular, roughly 30 tasks are solved at least
once through 10 runs (Figure 4), but less than
10 tasks are fully solved (Figure 3d).

Another interesting observation is that even
though fuzzers typically spend more time per generated input, as the underlying types are more
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(a) BST (b) RBT (c) STLC

Fig. 5. Comparison of the original FuzzChick (top) with the tuned one (bottom).

complex and large, mutating the input takes less time than generating a new one. For IFC, the
type-based generator takes four times longer per input than the type-based fuzzer.

5.2 Validation and Improvement of Fuzzers
Despite its minimal evaluation, the conclusion of Lampropoulos et al. [2019] seems to hold — that
is, FuzzChick shows promise compared to type-based approaches, but has a long way to go before
catching up with the effectiveness of precondition-driven ones. This led us to wonder, could we
further improve the performance of FuzzChick using Etna?

We focused on two different aspects of fuzzing: size and feedback. FuzzChick’s generation
strategy started small but quickly increased to quite large sizes, relying on the idea of “combinatorial
advantage” discussed in §4.2 — i.e., that larger inputs contain exponentially many smaller inputs and
are therefore more effective for testing. As we saw there, that is not always the case. After realizing
this, we switched to a more gently increasing size bound which led to significant improvements in
terms of throughput, positively impacting our bug-finding ability.
With respect to feedback, by using Etna to evaluate FuzzChick across multiple workloads we

were able to identify, isolate, and fix a bug that caused it to saturate the seed pool with uninteresting
inputs. FuzzChick (like Zest [Padhye et al. 2019]) keeps two seed pools: one for valid and one for
invalid inputs. FuzzChick’s bug applied to the latter one, and was hidden from its authors as the
variational fuzzer strategy they employed readily gives access to valid inputs (which are prioritized).

Results. Figure 5 demonstrates the bug-finding capabilities of the original (top) and tuned (bottom)
versions of FuzzChick across the new workloads. The tuned version clearly outperforms the original
in all cases (and is what was used in the previous section).

6 RELATED AND FUTUREWORK
The future directions we imagine for Etna are inspired by related work in the literature. Thus, we
discuss both related and future work together in this section.
Etna’s name, referencing every crossword-puzzler’s favorite Italian volcano, was inspired

by two existing benchmark suites in the fuzzing space: LAVA [Dolan-Gavitt et al. 2016] and
Magma [Hazimeh et al. 2020]. Both provide a suite of workloads that can be used to compare
different fuzzing tools: LAVA’s workloads consist of programs with illegal memory accesses that
are automatically injected, while Magma relies on real bugs forward-ported to the current versions
of libraries. More recently, FixReverter [Zhang et al. 2022] offered a middle ground, generalizing
real bug-fixes into patterns and applying them to multiple locations in a program. Etna is different
from these suites in a few ways. First, Etna aims to be a platform for exploration and evaluation
rather than a rigid set of benchmarks. Thus, we do not claim that Etna’s workloads are complete —
instead, we intend for users to add more over time. Additionally, evaluating fuzzing is quite different
from evaluating PBT, since PBT is expected to run for less time on programs with higher input
complexity. This means that Etna’s measurement techniques and workload focus must necessarily
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be different from LAVA’s or Magma’s. Still, there are ideas worth borrowing from these suites:
fuzzing benchmarks generally record code-coverage information, which we plan for Etna to
eventually offer as well.

Besides LAVA and Magma, there is a massive literature of Haskell and Coq papers from which we
will continue to draw both workloads and frameworks. With the help of the community, we hope
Etna will eventually include frameworks like: Luck [Lampropoulos et al. 2017], a language for
preconditions from which generators can be inferred; FEAT [Duregård et al. 2012], an enumerator
framework focusing on uniformity; tools for deriving better Haskell generators [Mista and Russo
2019, 2021]; and specification-driven enumerators for QuickChick [Paraskevopoulou et al. 2022].
Outside of Haskell and Coq, there are yet more opportunities for growth. Most immediately,

support for OCaml tools like Crowbar [Dolan 2017] and QCheck [Cruanes 2017] seem within
reach. This is particularly appealing as we could do inter-language comparisons; after all, Coq
runs via extraction to OCaml. We will also solicit framework maintainers and researchers to add
support for other languages such as Scala (SciFe [Kuraj and Kuncak 2014; Kuraj et al. 2015] and
ScalaCheck [Nilsson 2019]), Erlang (QuviQ [Arts et al. 2008] or PropEr [Papadakis and Sagonas
2011]), or Isabelle [Bulwahn 2012a,b].
Finally, the presentation backend of Etna is fit-for-purpose, but we intend to do further re-

search into the best possible ways to visualize PBT results. Consulting experts in human-computer
interaction (HCI), we plan to use tools like Voyager [Wongsuphasawat et al. 2017] to explore
which kinds of outcome visualizations real users of Etna want. At the very least, integrating Etna
into a Jupyter notebook [Jupyter 2023] and providing hooks into a powerful graphics engine like
Vega-lite [Satyanarayan et al. 2017] would make it easier for users to experiment with visualizations.

7 CONCLUSION
We designed Etna to meet a concrete need in our research — we needed a clear way to convince
ourselves and others that the PBT tools we build are worth pursuing. Etna provides that, with an
extensible suite of interesting workloads and the infrastructure necessary to validate and refine
designs against them. In §4 and §5, we originally set out to answer straightforward questions about
whether X is better than Y, and while we did get feedback about general trends, we also uncovered
some unexpected nuances of the testing process. PBT-curious readers may have further questions
building upon and extending beyond our explorations. Etna is there for you!
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A APPENDIX: THE ANATOMY OF AN EXPERIMENT SCRIPT
The following script executes a simple example in Etna. The user can select the specific tasks they
want to solve and the strategies that they use to solve them. At the end, the results are printed to a
set of CSV files which can then be visualized.
from benchtool.Haskell import Haskell

from benchtool.Types import TrialConfig

from benchtool.Analysis import *

results = 'results/'

tool = Haskell(results)

timeout = 60

# Loop through available workloads...

for workload in tool.all_workloads():

# ... filtering out any that are not necessary for this experiment.

if workload.name not in ['STLC', 'FSUB']:

continue

# Then loop through mutants...

for mutant in tool.all_mutants(workload):

# ... and perform the necessary replacement in the implementations.

run_trial = tool.apply_mutant(workload, mutant)

# Loop through strategies...

for strategy in tool.all_strategies(workload):

# ... and properties ...

for prop in tool.all_properties(workload):

# ... and run each trial.

cfg = TrialConfig(workload=workload,

strategy=strategy,

prop=prop,

trials=10,

timeout=timeout)

run_trial(cfg)

# Finally, parse the results into a pandas dataframe and

# use our provided analysis functions.

df = parse_results(results)

print(overall_solved(df, 'all', within=timeout))

15



ICFP’23, September 4–9, 2023, Seattle, WA, USA

B APPENDIX: TASK BUCKETS FOR ENUMERATOR SENSITIVITY EXPERIMENT
Full data for enumerator sensitivity, where = Naive LeanCheck, = Naive SmallCheck.

This first chart compares the performance on the BST and RBT workloads when the trees are at
the start of the properties (top rows) versus when they are at the end (bottom rows).

This second chart compares the performance on the STLC and FSUBworkloadswhen the constructor
enumeration order aligns with the definition of the data type (top rows) versus when the orders
are reversed (bottom rows).
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