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Abstract Integrating property-based testing with a proof assistant creates an
interesting opportunity: reusable or tricky testing code can be formally verified
using the proof assistant itself. In this work we introduce a novel methodology
for formally verified property-based testing and implement it as a foundational
verification framework for QuickChick, a port of QuickCheck to Coq. Our frame-
work enables one to verify that the executable testing code is testing the right Coq
property. To make verification tractable, we provide a systematic way for reasoning
about the set of outcomes a random data generator can produce with non-zero
probability, while abstracting away from the actual probabilities. Our framework
is firmly grounded in a fully verified implementation of QuickChick itself, using
the same underlying verification methodology. We also apply this methodology
to a complex case study on testing an information-flow control abstract machine,
demonstrating that our verification methodology is modular and scalable and that
it requires minimal changes to existing code.

1 Introduction
Property-based testing (PBT) allows programmers to capture informal conjectures
about their code as executable specifications and to thoroughly test these conjectures
on a large number of inputs, usually randomly generated. When a counterexample
is found it is shrunk to a minimal one, which is displayed to the programmer. The
original Haskell QuickCheck [19], the first popular PBT tool, has inspired ports to
every mainstream programming language and led to a growing body of continuing
research [6,18,26,35,39] and industrial interest [2,33]. PBT has also been integrated into
proof assistants [5, 10, 15, 23–25, 37] as a way of reducing the cost of formal verification,
finding bugs earlier in the verification process and decreasing the number of failed
proof attempts: Testing helps proving! Motivated by these earlier successes, we have
ported the QuickCheck framework to Coq, resulting in a prototype Coq plugin called
QuickChick. With QuickChick, we hope to make testing a convenient aid during Coq
proof development.

In this paper we explore a rather different way that testing and proving can cooperate
in a proof assistant. Since our testing code (and most of QuickChick itself) is written
in Coq, we can also formally verify this code using Coq. That is, proving helps testing!
This verified-testing idea was first proposed a decade ago by Dybjer, Haiyan, and
Takeyama [23, 24, 30] in the context of Agda/Alfa, but it has apparently received very
little attention since then [8, 9, 13].

Why would one want verified testing? Because PBT is very rarely a push-button
process. While frameworks such as QuickCheck provide generic infrastructure for
writing testing code, it is normally up to the user to compose the QuickCheck combinators
in creative ways to obtain effective testing code for the properties they care about. This



testing code can be highly non-trivial, so mistakes are hard to avoid. Some types of
mistakes are easily detected by the testing itself, while others are not: inadvertently
testing a stronger property will usually fail with a counter-example that one can manually
inspect, but testing a weaker or just a different property can succeed although the artifact
under test is completely broken with respect to the property of interest. Thus, while PBT
is effective at quickly finding bugs in formal artifacts, errors in testing code can conceal
important bugs, instilling a false sense of confidence until late in the verification process
and reducing the benefits of testing.

One response to this problem is providing more automation. QuickCheck uses type
classes for this purpose, and other tools go much further—using, for instance, techniques
inspired by functional logic programming and constraint solving [10–12, 14, 16, 18, 22,
26,27]. While automation reduces user effort by handling easy but tedious and repetitive
tasks, we are doubtful that the creative parts of writing effective testing code can be
fully automated in general (any more than writing non-trivial programs in any other
domain can); our experience shows that the parts that cannot be automated are usually
tricky enough to also contain bugs [31]. Moreover, the more sophisticated the testing
framework becomes, the higher the chances that it is going to contain bugs itself. Given
the randomized nature of QuickCheck-style PBT, such bugs can go unnoticed for a
long time; for example, it took more than a decade to discover that Haskell’s “splittable
pseudo-random number generator” was broken [20].

Thus, both for tricky user code and for reusable framework code, verified testing may
be an attractive solution. In particular, formal verification allows one to show that non-
trivial testing code is actually testing the intended property. To make this process viable
in practice, we need a modular and scalable way of reasoning about probabilistic testing
code. Moreover, for high assurance, we desire a verification framework based on strong
formal foundations, with precisely identified assumptions. More speculatively, such a
foundational verification framework could serve as a target for certificate-producing
metaprograms and external tools that produce testing code automatically (e.g., from
inductive type specifications or boolean predicates).

Contributions. We introduce a novel methodology for formally verified PBT and
implement it as a foundational verification framework for our QuickChick Coq plugin.
To make verification tractable, we provide a systematic way for reasoning about the set
of outcomes a random data generator can produce with non-zero probability, abstracting
away from actual probabilities. This possibilistic abstraction is not only convenient in
practice, but also very simple and intuitive. Beyond this abstraction, our framework
is firmly grounded on a fully verified implementation of QuickChick itself. We are
the first to successfully verify a QuickCheck-like library—significant validation for
our verification methodology. We also describe a significant case study on testing an
information-flow control abstract machine. These experimental results are encourag-
ing, indicating that our verification methodology is modular and scalable, requiring
minimal changes to existing code. Finally, porting QuickCheck to Coq is a useful side-
contribution that is of independent interest, and we hope that we and others will build
upon QuickChick in the future. Our verification framework relies on the SSReflect [29]
extension to Coq, and is fully integrated into QuickChick, which is available under a
permissive open source license at https://github.com/QuickChick.
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Outline. Our verification framework is illustrated on an example in §2 and pre-
sented in full detail in §3. The information-flow case study is discussed in §4. We present
related work in §5, before drawing conclusions and discussing future work in §6.

2 Example: Red-Black Trees

In this section we illustrate both the QuickChick plugin for Coq and our verification
framework on a simple red-black tree example.1 A red-black tree is a self-balancing
binary search tree in which each non-leaf node stores a data item and is colored either
Red or Black [36]. We define the type of red-black trees of naturals in Coq as follows:

Inductive color := Red | Black.
Inductive tree := Leaf : tree | Node : color -> tree -> nat -> tree -> tree.

Inserting a new element into a red-black tree is non-trivial as it involves re-balancing to
preserve the following invariants: (i) the root is black; (ii) all leaves are black; (iii) red
nodes have two black children; and (iv) from any given node, all descendant paths to
leaves have the same number of black nodes. (For simplicity, we ignore the binary-
search-tree property and focus only on balancing here.) If we wanted to prove that an
insert function of type nat -> tree -> tree preserves the red-black tree invariant, we
could take inspiration from Appel [1] and express this invariant in declarative form:

Inductive is_redblack’ : tree -> color -> nat -> Prop :=
| IsRB_leaf: forall c, is_redblack’ Leaf c 0
| IsRB_r: forall n tl tr h, is_redblack’ tl Red h -> is_redblack’ tr Red h ->

is_redblack’ (Node Red tl n tr) Black h
| IsRB_b: forall c n tl tr h, is_redblack’ tl Black h -> is_redblack’ tr Black h ->

is_redblack’ (Node Black tl n tr) c (S h).
Definition is_redblack (t:tree) : Prop := exists h, is_redblack’ t Red h.

The definition uses a helper inductive relation is_redblack’, pronounced “is a red-
black subtree,” with three parameters: (i) a sub-tree; (ii) the color-context c (i.e., the
color of the parent node); and (iii) the black-height h of the sub-tree (i.e., the number of
black nodes in any path from the root of the sub-tree to a leaf). A leaf is a well-formed
red-black sub-tree in any color-context and has black-height 0. A node is a red-black
sub-tree if both its child trees are red-black sub-trees and if the color-context is black in
case it has a red root. Moreover, the black-height of the children must be equal, and we
increase this height by 1 if the root is black. Using this definition we might like to prove
in Coq the following property of insert:

Definition insert_preserves_redblack : Prop :=
forall x s, is_redblack s -> is_redblack (insert x s).

Before starting a proof of this proposition we would like to quickly check that we did
not do any mistakes in the definition of insert or is_redblack. However, the declara-
tive definition of is_redblack is not well adapted to efficient testing. Even if we were
able to automatically give an executable interpretation to the inductive definition of

1 The complete code for this example is available at
https://github.com/QuickChick/QuickChick/tree/master/examples/RedBlack
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is_redblack’ [3, 4, 21, 41], we would still have to guess the existentially quantified black-
height h, which would be highly inefficient. So in order to effectively test the is_redblack
invariant, we first manually devise an efficiently executable version:

Definition is_redblack_bool (t : tree) : bool :=
is_black_balanced t && has_no_red_red Red t.

We omit the definitions of the auxiliaries is_black_balanced and has_no_red_red. While
is_redblack_bool allows us to check whether a tree is red-black or not, in order to test
the invariant of insert using QuickChick, we also need a way to generate random trees.
We start by devising a generic tree generator using the QuickChick combinators:

Definition genColor := elems [Red; Black].
Fixpoint genAnyTree_depth (d : nat) : G tree :=
match d with
| 0 => returnGen Leaf
| S d’ => freq [(1, returnGen Leaf);

(9, liftGen4 Node genColor (genAnyTree_depth d’)
arbitrary (genAnyTree_depth d’))]

end.
Definition genAnyTree : G tree := sized genAnyTree_depth.

The genAnyTree_depth auxiliary generates trees of a given depth. If the depth is zero, we
generate a leaf using returnGen Leaf, otherwise we use the freq combinator to choose
whether to generate a leaf or to generate a color using genColor, a natural number using
arbitrary, the two sub-trees using recursive calls, and put everything together using
liftGen4 Node. The code illustrates several QuickChick combinators: (i) elems chooses a
color from a list of colors uniformly at random; (ii) returnGen always chooses the same
thing, a Leaf in this case; (iii) freq performs a biased probabilistic choice choosing a
generator from a list using user-provided weights (in the example above we generate
nodes 9 times more often than leafs); (iv) liftGen4 takes a function of 4 arguments, here
the Node constructor, and applies it to the result of 4 other generators; (v) arbitrary is a
method of the Arbitrary type class, which assigns default generators to frequently used
types, in this case the naturals; and (vi) sized takes a generator parameterized by a size,
in this case genAnyTree_depth, and produces a non-parameterized generator by iterating
over different sizes. Even this naive generator is easy to get wrong: our first take at it
did not include the call to freq and was thus only generating full trees, which can cause
testing to miss interesting bugs.

The final step for testing the insert function using this naive generator is combining
the genAnyTree generator and the is_redblack boolean function into a property checker—
i.e., the testing equivalent of insert_preserves_redblack:

Definition insert_preserves_redblack_checker (genTree : G tree) : Checker :=
forAll arbitrary (fun n => forAll genTree (fun t =>
is_redblack_bool t ==> is_redblack_bool (insert n t))).

This uses two checker combinators from QuickChick: (i) forAll produces data using a
generator and passes it to another checker; and (ii) c1 ==> c2 takes two checkers c1 and
c2 and tests that c2 does not fail when c1 succeeds. The “==>” operator also remembers
the percentage of inputs that do not satisfy the precondition c1 and thus have to be
discarded without checking the conclusion c2. In our running example c1 and c2 are two
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boolean expressions that are implicitly promoted to checkers. Now we have something
we can test using the QuickChick plugin, using the QuickChick command:
QuickChick (insert_preserves_redblack_checker genAnyTree).
*** Gave up! Passed only 2415 tests
Discarded: 20000

We have a problem: Our naive generator for trees is very unlikely to generate red-black
trees, so the premise of insert_preserves_redblack_checker is false and thus the property
vacuously true 88% of the time.The conclusion is actually tested infrequently, and if we
collect statistics about the distribution of data on which it is tested, we see that the size
of the trees that pass the very strong precondition is very small: about 95.3% of the trees
have 1 node, 4.2% of them have 3 nodes, 0.4% of them have 5 nodes, and only 0.03% of
them have 7 or 9 nodes. So we are not yet doing a good job at testing the property. While
the generator above is very simple—it could probably even be generated automatically
from the definition of tree [3, 5, 42]—in order to effectively test the property we need to
write a property-based generator that only produces red-black trees.

Program Fixpoint genRBTree_height (hc : nat*color) {wf wf_hc hc} : G tree :=
match hc with
| (0, Red) => returnGen Leaf
| (0, Black) => oneOf [returnGen Leaf;

(do! n <- arbitrary; returnGen (Node Red Leaf n Leaf))]
| (S h, Red) => liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))

arbitrary (genRBTree_height (h, Black))
| (S h, Black) => do! c’ <- genColor;

let h’ := match c’ with Red => S h | Black => h end in
liftGen4 Node (returnGen c’) (genRBTree_height (h’, c’))

arbitrary (genRBTree_height (h’, c’)) end.
Definition genRBTree := bindGen arbitrary (fun h => genRBTree_height (h, Red)).

The genRBTree_height generator produces red-black trees of a given black-height and
color-context. For black-height 0, if the color-context is Red it returns a (black) leaf, and if
the color-context is Black it uses the oneOf combinator to select between two generators:
one that returns a leaf, and another that returns a Red node with leaf children and a
random number. The latter uses do notation for bind (“do! n <- arbitrary; ...”) in the
G randomness monad. For black-height larger than 0 and color-context Red we always
generate a Black node (to prevent red-red conflicts) and generate the sub-trees recursively
using a smaller black-height. Finally, for black-height larger than 0 and color-context
Black we have the choice of generating a Red or a Black node. If we generate a Red node
the recursive call is done using the same black-length. The function is shown terminating
using a lexicographic ordering on the black-height and color-context.

With this new generator we can run 10000 tests on a laptop in less than 9 seconds,
of which only 1 second is spent executing the tests. The the rest is spent extracting to
OCaml and running the OCaml compiler (the extraction and compilation part could be
significantly sped up; this time is also easily amortized for longer running tests):

QuickChick (insert_preserves_redblack_checker genRBTree).
+++ OK, passed 10000 tests

Moreover, none of the generated trees fails the precondition and the average size of the
trees used for testing the conclusion is 940.7 nodes (compared to 1.1 nodes naively!)

5



In the process of testing, we have, however, written quite a bit of executable testing
code—some of it non-trivial, like the generator for red-black trees. How do we know
that this code is testing the declarative proposition we started with? Does our generator
for red-black trees only produce red-black trees, and even more importantly can it in
principle produce all red-black trees? Our foundational testing verification framework
supports formal answers to these questions. In our framework the semantics of each
generator is the set of values that have non-zero probability of being generated. Building
on this, we assign a semantics to each checker expressing the logical proposition it
tests, abstracting away from computational constraints like space and time as well as the
precise probability distributions of the generators it uses. In concrete terms, a function
semChecker assigns each Checker a Prop, and a function semGen assigns each generator of
type G A a (non-computable) set of outcomes with Coq type A -> Prop.

semChecker : Checker -> Prop
semCheckable : forall (C : Type) ‘{Checkable C}, C -> Prop.
Definition set T := T -> Prop.
Definition set_eq {A} (m1 m2 : set A) := forall (a : A), m1 a <-> m2 a.
Infix "<-->" := set_eq (at level 70, no associativity) : set_scope.
semGen : forall A : Type, G A -> set A
semGenSize : forall A : Type, G A -> nat -> set A

Given these, we can prove that a checker c tests a declarative proposition P by showing
that semChecker c is logically equivalent with P. Similarly, we can prove that a generator
g produces the set of outcomes O by showing that the set semGen g is equal to O, using
the extensional definition of set equality set_eq above. Returning to our red-black tree
example we can prove the following top-level theorem:

Lemma insert_preserves_redblack_checker_correct:
semChecker (insert_preserves_redblack_checker genRBTree)
<-> insert_preserves_redblack.

The top-level structure of the checker and the declarative proposition is very similar
in this case, and our framework provides lemmas about the semantics of forAll and
“==>” that we can use to make the connection (semCheckable is just a variant of semChecker
described further in §3.2):

Lemma semForAllSizeMonotonic {A C} ‘{Show A, Checkable C} (g : G A) (f : A -> C)
‘{SizeMonotonic _ g} ‘{forall a, SizeMonotonicChecker (checker (f a))} :

(semChecker (forAll g f) <-> forall (a:A), a \in semGen g -> semCheckable (f a)).

Lemma semImplication {C} ‘{Checkable C} (c : C) (b : bool) :
semChecker (b ==> c) <-> (b -> semCheckable c).

Lemma semCheckableBool (b : bool) : semCheckable b <-> b.

Using these generic lemmas, we reduce the original equivalence we want to show to the
equivalence between is_redblack and is_redblack_bool (reflect is equivalence between
a Prop and a bool in the SSReflect libraries).

Lemma is_redblackP t : reflect (is_redblack t) (is_redblack_bool t).

Moreover, we need to show that the generator for red-black trees is complete; i.e., they it
can generate all red-black trees. We show this via a series of lemmas, including:

Lemma semColor : semGen genColor <--> [set : color].
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Lemma semGenRBTreeHeight h c :
semGen (genRBTree_height (h, c)) <--> [set t | is_redblack’ t c h ].

Lemma semRBTree : semGen genRBTree <--> [set t | is_redblack t].

The proofs of these custom lemmas rely again on generic lemmas about the QuickChick
combinators that they use. We list most the generic lemmas that we used in this proof:

Lemma semReturn {A} (x : A) : semGen (returnGen x) <--> [set x].

Lemma semBindSizeMonotonic {A B} (g : G A) (f : A -> G B)
‘{Hg : SizeMonotonic _ g} ‘{Hf : forall a, SizeMonotonic (f a)} :

semGen (bindGen g f) <--> \bigcup_(a in semGen g) semGen (f a).

Lemma semElems A (x : A) xs : semGen (elems (x ;; xs)) <--> x :: xs.

Lemma semOneOf A (g0 : G A) (gs : list (G A)) :
semGen (oneOf (g0 ;; gs)) <--> \bigcup_(g in (g0 :: gs)) semGen g.

While the proof of the red-black tree generator still requires manual effort the user
only needs to verify the code she wrote, relying on the precise high-level specifications
of all combinators she uses (e.g., the lemmas above). Moreover, all proofs are in terms of
propositions and sets, not probability distributions or low-level pseudo-randomness. The
complete example is around 150 lines of proofs for 236 lines of definitions. While more
aggressive automation (e.g., using SMT) could further reduce the effort in the future, we
believe that verifying reusable or tricky testing code (like QuickChick itself or the IFC
generators from §4) with our framework is already an interesting proposition.

3 Foundational Verification Framework

As the example above illustrates, the main advantage of using our verified testing
framework is the ability to carry out abstract (possibilistic) correctness proofs of testing
code with respect to the high-level specifications of the QuickChick combinators. But
how do we know that those specifications are correct? And what exactly do we mean
by “correct”? What does it mean that a property checker is testing the right proposition,
or that a generator is in principle able to produce a certain outcome? To answer these
questions with high confidence we have verified QuickChick all the way down to a
small set of definitions and assumptions. At the base of our formal construction lies
our possibilistic semantics of generators (§3.1) and checkers (§3.2), and an idealized
interface for a splittable pseudorandom number generator (splittable PRNG, in §3.3). Our
possibilistic abstraction allows us to completely avoid complex probabilistic reasoning at
all levels, which greatly improves the scalability and ease of use of our methodology. On
top of this we verify all the combinators of QuickChick, following the modular structure
of the code (§3.4). We provide support for conveniently reasoning about sizes (§3.5) and
about generators for functions (§3.6). Our proofs use a small library for reasoning about
non-computable sets in point-free style (§3.7).

3.1 Set-of-Outcomes Semantics for Generators In our framework, the semantics of a
generator is the set of outcomes it can produce with non-zero probability. We chose this
over a more precise abstraction involving probability distributions, because specifying
and verifying probabilistic programs is significantly harder than nondeterministic ones.
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Our possibilistic semantics is simpler and easier to work with, allowing us to scale up
our verification to realistic generators, while still being precise enough to find many bugs
in them (§4). Moreover, the possibilistic semantics allows us to directly relate checkers
to the declarative propositions they test (§3.2); in a probabilistic setting the obvious way
to achieve this is by only looking at the support of the probability distributions, which
would be equivalent to what we do, just more complex. Finally, with our set-of-outcomes
semantics, set inclusion corresponds exactly to generator surjectivity from previous work
on verified testing [23, 24, 30], while bringing significant improvements to proofs via
point-free reasoning (§3.7) and allowing us to verify both soundness and completeness.

QuickChick generators are represented internally the same way as a reader monad [34]
with two parameters: a size and a random seed [19] (the bind of this monad splits the
seed, which is further discussed in §3.3 and §3.4).

Inductive G (A:Type) : Type := MkGen : (nat -> RandomSeed -> A) -> G A.

Definition run {A : Type} (g : G A) := match g with MkGen f => f end.

Formally, the semantics of a generator g of type G A is defined as the set of elements a of
type A for which there exist a size s and a random seed r with run g s r = a.

Definition semGenSize {A : Type} (g : G A) (s : nat) : set A :=
[set a : A | exists r, run g s r = a].

Definition semGen {A : Type} (g : G A) : set A :=
[set a : A | exists s, a \in semGenSize g s].

We also define semGenSize, a variant of the semantics that assigns to a generator the
outcomes it can produce for a given size. Reasoning about sizes is discussed in §3.5.

3.2 Possibilistic Semantics of Checkers A property checker is an executable routine
that expresses a property under test so that is can be checked against a large number
of randomly generated inputs. The result of a test can be either successful, when the
property holds for a given input, or it may reveal a counterexample. Property checkers
have type Checker and are essentially generators of testing results.

In our framework the semantics of a checker is a Coq proposition. The proposition
obtained from the semantics can then be proved logically equivalent to the desired high-
level proposition that we claim to test. More precisely, we map a checker to a proposition
that holds if and only if no counterexamples can possibly be generated, i.e., when the
property we are testing is always valid for the generators we are using. This can be
expressed very naturally in our framework by stating that all the results that belong to the
set of outcomes of the checker are successful (remember that checkers are generators),
meaning that they do not yield any counterexample. Analogously to generators, we also
define semCheckerSize that maps the checker to its semantics for a given size.

Definition semCheckerSize (c : Checker) (s : nat): Prop :=
successful @: semGenSize c s \subset [set true].

Definition semChecker (c : Checker) : Prop := forall s, semCheckerSize c s.

Universally quantifying over all sizes in the definition of semChecker is a useful idealiza-
tion. While in practice QuickChick uses an incomplete heuristic for trying out different
sizes in an efficient way, it would be very cumbersome and completely unenlightening to
reason formally about this heuristic. By deliberately abstracting away from this source
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of incompleteness in QuickChick, we obtain a cleaner mathematical model. Despite this
idealization, it is often not possible to completely abstract away from the sizes in our
proofs, but we provide ways to make reasoning about sizes convenient (§3.5).

In order to make writing checkers easier, QuickChick provides the type class
Checkable that defines checker, a coercion from a certain type (e.g., bool) to Checker.
We trivially give semantics to a type that is instance of Checkable with:
Definition semCheckableSize {A} ‘{Checkable A} (a : A) (s : nat) : Prop :=
semCheckerSize (checker a) s.

Definition semCheckable {A} ‘{Checkable A} (a : A) : Prop := semChecker (checker a).

3.3 Splittable Pseudorandom Number Generator Interface QuickChick’s splittable
PRNG is written in OCaml. The rest of QuickChick is written and verified in Coq and
then extracted to OCaml. Testing happens outside of Coq for efficiency reasons. The
random seed type and the low-level operations on it, such as splitting a random seed and
generating booleans and numbers, are simply axioms in Coq. Our proofs also assume
that the random seed type is inhabited and that the operations producing numbers from
seeds respect the provided range. All these axioms would disappear if the splittable
PRNG were implemented in Coq. One remaining axiom would stay though, since it is
inherent to our idealized model of randomness:
Axiom randomSplit : RandomSeed -> RandomSeed * RandomSeed.
Axiom randomSplitAssumption :
forall s1 s2 : RandomSeed, exists s, randomSplit s = (s1,s2).

This axiom says that the randomSplit function is surjective. This axiom has non-trivial
models: the RandomSeed type could be instantiated with the naturals, infinite streams,
infinite trees, etc. One can also easily show that, in all non-trivial models of this axiom,
RandomSeed is an infinite type. In reality though, PRNGs work with finite seeds. Our
axiom basically takes us from pseudorandomness to ideal mathematical randomness, as
used in probability theory. This idealization seems unavoidable for formal reasoning and
it would also be needed even if we did probabilistic as opposed to possibilistic reasoning.
Conceptually, one can think of our framework as raising the level of discourse in two
ways: (i) idealizing pseudorandomness to probabilities; and (ii) abstracting probability
distributions to their support sets. While the abstraction step could be formally justified
(although we do not do this at the moment), the idealization step has to be taken on faith
and intuition only. We believe that the possibilistic semantics from §3.1 and §3.2 and the
axioms described here are simple and intuitive enough to be trusted; together with Coq
they form the trusted computing base of our foundational verification framework.

3.4 Verified Testing Combinators QuickChick provides numerous combinators for
building generators and checkers. Using the semantics described above, we prove that
each of these combinators satisfies a high-level declarative specification. We build our
proofs following the modular organization of the QuickChick code (Fig. 1): only a few
low-level generator combinators directly access the splittable PRNG interface and the
concrete representation of generators. All the other combinators are built on top of the
low-level generators. This modular organization is convenient for structuring our proofs
all the way down. Table 1 illustrates an important part of the combinator library and how
it is divided into low-level generators, high-level generators, and checkers.
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Splittable PRNG (OCaml) 

Low-Level Generators 

High-Level Generators 

User Code 

Generator Representation 

Checkers 

Figure 1. QuickChick organization diagram

The verification of low-level gener-
ators has to be done in a very concrete
way that involves reasoning about ran-
dom seeds. However, once we fully spec-
ify these generators in terms of their sets
of outcomes, the proof of any generator
that builds on top of them can be done
in a fully compositional way that only
depends on the set of outcomes specifi-
cations of the combinators used, abstract-
ing away from the internal representation
of generators, the implementation of the
combinators, and the PRNG interface.
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frequency: forall {A : Type}, G A -> list (nat * G A) -> G A
vectorOf: forall {A : Type}, nat -> G A -> G (list A)
listOf: forall {A : Type}, G A -> G (list A)
elements: forall {A : Type}, A -> list A -> G A
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bindGen: forall {A B : Type}, G A -> (A -> G B) -> G B
fmap: forall {A B : Type}, (A -> B) -> G A -> G B
sized: forall {A: Type}, (nat -> G A) -> G A
resize: forall {A: Type}, nat -> G A -> G A
suchThatMaybe: forall {A : Type}, G A -> (A -> bool) -> G (option A)
choose: forall {A : Type} ‘{ChoosableFromInterval A}, (A * A) -> G A

Table 1. Selected QuickChick combinators

As we want the proofs to be structured in compositional way and only depend on the
specifications and not the implementation of the combinators, we make the combinator
implementations opaque for later proofs by enclosing them in a module that only exports
their specifications. The size of the QuickChick framework (excluding examples) is
around 2.4 kLOC of definitions and 2.0 kLOC of proofs.
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3.5 Conveniently Reasoning about Sizes QuickChick does not prescribe how the gen-
erators use the size parameter: some of them are actually unsized (they do not use their
size parameter at all), while others are sized (they produce data depending on the size).
For instance genColor from §2 is unsized—it always chooses uniformly at random be-
tween Red or Black—while genAnyTree and genRBTree are both sized. For sized generators,
the precise size dependency can vary; indeed, there can be different notions of size for
the same type: e.g., for genAnyTree size means depth, while for genRBTree it means black-
height. Finally, some generators take the size parameter to mean the maximal size of the
data they generate (e.g., the default generator for naturals, genAnyTree, genRBTree), while
others take it to mean the exact size (e.g., sized (fun h => genRBTree_height (h, Red))
would be such a generator). Through our verification we discovered that unsized gen-
erators and sized generators using maximal size are easier to compose right since they
allow stronger principles for compositional reasoning.

In §3.2 we defined the semantics of checkers by universally quantifying over all
sizes, so one could naively expect that with this idealization there would be no need to
unfold semGen and reason explicitly about the size parameter in terms of semGenSize in
our generator proofs. Unfortunately, this is not always the case: low-level combinators
taking several generators (or generator-producing functions) as arguments call all these
arguments with the same size parameter (reader monad). For instance, bindGen g f
returns a generator that given a size s and a seed r, splits r into (r1,r2), runs g on s and
r1 in order to generate a value v, then applies f to v and runs the resulting generator
with the same size s and with seed r2. It would be very tempting to try to give bindGen
the following very intuitive specification, basically interpreting it as the bind of the
nondetederminism monad:2

semGen (bindGen g f) <--> \bigcup_(a \in semGen g) semGen (f a).

This intuitive specification is, however, wrong in our setting. The set on the right-hand
side contains elements that are generated from (f a) for some size parameter, whereas a
is an element that has been generated from g with a different size parameter. This would
allow us to prove the following generator complete

gAB = bindGen gA (fun a => bindGen gB (fun b => returnGen (a,b)))

with respect to [set : A * B] for any generators gA and gB for types A and B, even in the
case when gA and gB are fixed-size generators, in which case gAB only produces pairs of
equally-sized elements. In our setting, a correct specification of bindGen that works for
arbitrary generators can only be given in terms of semGenSize, where the size parameter
is also threaded through explicitly at the specification level:

Lemma semBindSize A B (g : G A) (f : A -> G B) (s : nat) :
semGenSize (bindGen g f) s <--> \bigcup_(a in semGenSize g s) semGenSize (f a) s.

The two calls to semGenSize on the right-hand side are now passed the same size.
While in general we cannot avoid explicitly reasoning about the interaction between

the ways composed generators use sizes, we can avoid it for two large classes of
generators: unsized and size-monotonic generators. We call a generator size-monotonic

2 Indeed, in a preliminary version of our framework [38] the low-level generators were axiomatized instead
of verified with respect to a semantics, and we took this specification as an axiom.

11



when increasing the size produces a larger (with respect to set inclusion) set of outcomes.
Formally, these properties of generators are expressed by the following two type classes:

Class Unsized {A} (g : G A) := {
unsized : forall s1 s2, semGenSize g s1 <--> semGenSize g s2 }.

Class SizeMonotonic {A} (g : G A) := {
monotonic : forall s1 s2, s1 <= s2 -> semGenSize g s1 \subset semGenSize g s2 }.

The gAB generator above is in fact complete with respect to [set : A * B] if at least
one of gA and gB is Unsized or if both gA and gB are SizeMonotonic. We can prove this
conveniently using specialized specifications for bindGen from our library, such as the
semBindSizeMonotonic lemma from §2 or the lemma below:

Lemma semBindUnsized1 {A B} (g : G A) (f : A -> G B) ‘{H : Unsized _ g}:
semGen (bindGen g f) <--> \bigcup_(a in semGen g) semGen (f a).

Our library additionally provides generic type-class instances for proving automati-
cally that generators are Unsized or SizeMonotonic. For instance Unsized generators are
always SizeMonotonic and a bind is Unsized when both its parts are Unsized:

Declare Instance unsizedMonotonic {A} (g : G A) ‘{Unsized _ g} : SizeMonotonic g.

Declare Instance bindUnsized {A B} (g : G A) (f : A -> G B)
‘{Unsized _ g} ‘{forall x, Unsized (f x)} : Unsized (bindGen g f).

There is a similar situation for checkers, for instance the lemma providing a specifi-
cation to forAll (internally just a bindGen) we used in §2 is only correct because of the
preconditions that both the generator and the body of the forAll are SizeMonotonic.

3.6 Verified Generation of Functions In QuickChick we emulate (and verify!) the
original QuickCheck’s approach to generating functions [17, 19]. In order to generate
a function f of type a->b we use a generator for type b, making sure that subsequent
calls to f with the same argument use the same random seed. Upon function generation,
QuickCheck captures a random seed within the returned closure. The closure calls a
user-provided coarbitrary method that deterministically derives a new seed based on the
captured seed and each argument to the function, and then passes this new seed to the
generator for type b.

Conceptually, repeatedly splitting a random seed gives rise to an infinite binary
tree of random seeds. Mapping arguments of type a to tree paths gives rise to a natural
implementation of the coarbitrary method. For random generation to be correct, the set
of all possible paths used for generation needs to be prefix-free: if any path is a subpath
of another then the values that will be generated will be correlated.

To make our framework easier to use, we decompose verifying completeness of
function generation into two parts. On the client side, the user need only provide an
injective mapping from the function argument type to positives (binary positive integers)
to leverage the guarantees of our framework. On the framework side, we made the
split-tree explicit using lists of booleans as paths and proved a completeness theorem:

Theorem SplitPathCompleteness (l : list SplitPath) (f : SplitPath -> RandomSeed) :
PrefixFree l -> exists (s : RandomSeed), forall p, In p l -> varySeed p s = f p.

12



Intuitively, given any finite prefix-free set of paths S and a function f from paths to seeds,
there exists a random seed s such that following any path p from S in s’s split-tree, we get
f p. In addition, our framework provides a mapping from Coq’s positives to a prefix-free
subset of paths. Combining all of the above with the user-provided injective mapping to
positives, the user can get strong correctness guarantees for function generation.

Theorem arbFunComplete ‘{CoArbitrary A, Arbitrary B} (max:A) (f:A-> B) (s:nat) :
s = Pos.to_nat (coarbitrary max) -> (semGenSize arbitrary s <--> setT) ->
exists seed, forall a, coarbLe a max -> run arbitrary s seed a = f a.

For generators for finite argument function types, the above is a full completeness
proof, assuming the result type also admits a complete generator. For functions with
infinite argument types we get a weaker notion of completeness: given any finite subset
A of a and any function f : a->b, there exists a seed that generates a function f’ that
agrees with f in A. We have a paper proof (not yet formalized) extending this to a proof
of completeness for arbitrary functions using transfinite induction and assuming the set
of seeds is uncountable.

3.7 Reasoning about non-computable sets Our framework provides convenient ways
of reasoning about the set-of-outcomes semantics from §3.1. In particular, we favor as
much as possible point-free reasoning by relating generator combinators to set operations.
To this aim, we designed a small library for reasoning about non-computable sets that
could be generally useful. A set A over type T is represented by a function P : T -> Prop
such that P x expresses whether x belongs to A. On such sets, we defined and proved
properties of (extensional) equality, inclusion, union and intersection, product sets,
iterated union and the image of a set through a function. Interestingly enough, we did
not need the set complement, which made it possible to avoid classical logic. Finally,
in Coq’s logic, extensional equality of predicates does not coincide with the primitive
notion of equality. So in order to be able to rewrite with identities between sets (critical
for point-free reasoning), we could have assumed some extensionality axioms. However,
we decided to avoid this and instead used generalized rewriting [40], which extends the
usual facilities for rewriting with primitive equality to more general relations.

4 Case Study: Testing Noninterference

We applied our methodology to verify the existing generators used in a complex testing
infrastructure for information flow control machines [31,32]. The machines dynamically
enforce noninterference: starting from any pair of indistinguishable states, any two exe-
cutions result in final states are also indistinguishable. Instead of testing this end-to-end
property directly we test a stronger single-step invariant proposed in [31, 32](usually
called unwinding conditions [28]). Each generated machine state consists of instruction
and data memories, a program counter, a stack and a set of registers. The generators we
verified produce pairs of indistinguishable states according to a certain indistinguisha-
bility definition. The first state is generated arbitrarily and the second is produced by
randomly varying the first in order to create an indistinguishable state.

We verified each of these generators with respect to a high-level specification. We
proved soundness of the generation strategy, i.e. that any pair generated by the variation
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generators was indeed indistinguishable, thus state variation generation is sound with re-
spect to indistinguishability. We also proved completeness of the generators with respect
to a set of outcomes that is smaller than all possible indistinguishable states, precisely
capturing the behavior of our generators. While generating all pairs of indistinguishable
states seems good in theory, in practice it is more efficient to bound the size of the
generated artifacts. However, the trade-off between completeness and efficiency needs
to be considered carefully and our framework allowed us to understand and precisely
characterize what additional constraints we enforce in our generation, revealing a number
of bugs in the process. One of the trade-offs we had to precisely characterize in our specs
is that we only generate instruction sequences of length 2, since we are only going to
execute at most one instruction in a single step, but we must also allow the program
counter to point to different instructions. This greatly improves efficiency since it is
much cheaper to generate a couple than an entire sequence of reasonable instructions.

In some cases, we were not able to prove completeness with respect to the specifi-
cation we had in mind when writing the generators. These cases revealed bugs in our
generation that were not found during extensive prior testing and experiments. Some
revealed hidden assumptions we had made while testing progressively more complex
machines. For instance, in the simple stack-machine from [31], the label of the saved
program counters on the stack was always decreasing. When porting the generators to
more complex machines that invalidated this assumption, one should have restructured
generation to reflect this. In our attempts to prove completeness this assumption surfaced
and we were able to fix the problem, validate our fixes and see a noticeable improvement
in bug-finding capabilities (some of the bugs we introduced on purpose in the IFC
machine to evaluate testing were found much faster).

Other bugs we found were minor errors in the generation. For instance, when gen-
erating an indistinguishable atom from an existing one, most of the time we want to
preserve the type of the atom (pointers to pointers, labels to labels, etc.) while varying
the payload. This is necessary for example in cases where the atoms will be touched by
the same instruction that expects a pointer at a location and finding something else there
would raise a non-informative (for IFC) exception. On the other hand we did not always
want to generate atoms of the same type, because some bugs might only be exposed in
those cases. We had forgotten to vary the type in our generation which was revealed and
fixed during proving. Fixing all these completeness bugs had little impact on generator
efficiency, while giving us better testing.

In this case study we were able to verify existing code that was not written with
verification in mind. For verifying ≈2000 lines of Coq code (of which around ≈1000
lines deal strictly with generation and indistinguishability and the other ≈1000 lines
are transitively used definitions) our proofs required ≈2000 lines of code. We think this
number could be further reduced in the future by taking better advantage of point-free
reasoning and the non-computable sets library. With minimal changes to the existing
code (e.g. fixing revealed bugs) we were able to structure our proofs in a compositional
and modular way. We were able to locate incomplete generators with respect to our
specification, reason about the exact sets of values that they can generate, and fix real
problems in an already thoroughly tested code base.

14



5 Related Work

In their seminal work on combining testing and proving in dependent type theory [23,24],
Dybjer et al., also introduce the idea of verifying generators and identify surjectivity
(completeness) as the most important property to verify. They model generators in
Agda/Alfa as functions transforming finite binary trees of naturals to elements of the
domain, and prove from first principles the surjectivity of several generators similar in
complexity to our red-black tree example generator from §2. They study a more complex
propositional solver using a randomized Prolog-like search [24, 30], but apparently only
prove this generator correct informally, on paper [30, Appendix of Chapter 4]. The binary
trees of naturals are randomly generated outside the system, and roughly correspond both
to our seed and size. While Dybjer et al.’s idea of verifying generators is pioneering, we
take this further and build a generic verification framework for PBT. By separating seeds
and sizes, as already done in QuickCheck [19], we get much more control over the size
of the data we can construct. While this makes formal verification a bit more difficult
as we have to explicitly reason about sizes in our proofs, we support compositional
size reasoning via type classes such as Unsized and SizeMonotonic (§3.5). Finally, our
checkers do not have a fixed shape, but are also built and verified in a modular way.

In a previous attempt at bringing PBT to Coq, Wilson [42] created a simplified
QuickCheck like tool for automatically generating test inputs for a small class of testable
properties. His goal was to support dependently typed programming in Coq with both
proof automation and testing support. In the same work, attempts are made to aid
proof automation by disproving false generalizations using testing. However there is no
support for writing generations in Coq and therefore also no way of proving interesting
facts about generators. In addition, the generation is executed inside Coq which can
lead to inefficiency issues without proper care. For example, as they report, a simple
multiplication 200 x 200 takes them 0.35s, while at the same time our framework can
generate and test the insert property on around 400 red-black trees (§2).

A different approach at producing a formalized testing tool was taken in the context
of FocalTest [13]. Their verification goal is different; they want to provide a fully verified
constraint-based testing tool that automatically generates MC/DC compliant test suites
from high-level specifications. They prove a translation from their high level ML-like
language to their constraint solving language.

Isabelle provides significant support for testing, in particular via a push-button testing
framework [5, 10]. The current goals for QuickChick are different: we do not try to
automatically generate test data satisfying complex invariant, but provide ways for
the users to construct property-based generators. Both of these approaches have their
advantages: the automatic generation of random test data in Isabelle is relatively easy
to use for novices, while the approach taken by QuickChick gives the experienced user
more control over how the data is generated. In the future, it would make sense to
combine these approaches and obtain the best of both worlds.

A work perhaps closer related to ours, but still complementary, is the one by Brucker
et al [9], who in their HOL-TestGen framework also take a more foundational approach
to testing methodologies, making certain assumptions explicit. Instead of using adequacy
criteria like MC/DC [13], they provide feedback on “what remains to be proved” after
testing. This is somewhat similar in concept to the notion of completeness of generators
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in our framework. However the tool’s approach to generation is automatic small-scale
exhaustive testing with no support for manual generators. Our experience is that ran-
domized testing with large instances scales much better in practice. A more recent
paper on HOL-TestGen [7] presents a complete case study and establishes a formal
correspondence between the specifications of the program under test and the properties
that will be tested after optimization.

6 Conclusion and Future Work

We introduce a novel methodology for formally verified PBT and implement it as a foun-
dational verification framework for QuickChick, our Coq clone of Haskell QuickCheck.
Our verification framework is firmly grounded in a verified implementation of QuickChick
itself. This illustrates an interesting interaction between testing and proving in a proof
assistant, showing that proving can help testing. This also reinforces the general idea
that testing and proving are synergistic activities, and gives us hope that a virtuous cycle
between testing and proving can be achieved in a theorem prover.

Future work. Our framework reduces the effort of proving the correctness of
testing code to a reasonable level, so verifying reusable or tricky code should already be
an interesting proposition in many cases. The sets of outcomes abstraction also seems
well-suited for more aggressive automation in the future (e.g., using an SMT solver).

Maybe more importantly, one should also strive to reduce the cost of effective
testing in the first place. For instance, we are working on a property-based generator
language in which programs can be interpreted both as boolean predicates and as
generators for the same property. Other tools from the literature provide automation for
testing [10–12, 14, 16, 18, 22, 26, 27], still, with very few exceptions [13], the code of
these tools is fully trusted. While for some of these tools full formal verification might be
too ambitious at the moment, having these tools produce certificates that can be checked
in a foundational framework like ours seems well within reach.

Acknowledgments. We thank John Hughes for insightful discussions and the
anonymous reviewers for their helpful comments.
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