
Making Our Own Luck
A Language for Random Generators

(Extended Abstract)

Leonidas Lampropoulos1 Benjamin C. Pierce1 Cătălin Hriţcu2

John Hughes3 Zoe Paraskevopoulou4 Li-yao Xia2,5

1University of Pennsylvania 2INRIA Paris 3Chalmers University 4Princeton 5ENS Paris

Abstract
QuickCheck-style property-based random testing [4] re-
quires efficient generators for well-distributed random
data satisfying complex logical predicates. Writing such
generators by hand can be difficult and error prone.

We propose a domain-specific language, Luck, in
which generators are expressed by decorating predicates
with lightweight annotations controlling both the distri-
bution of generated values and the amount of constraint
solving that happens before each variable is instantiated.
Generators in Luck are compact, readable, and maintain-
able, with efficiency close to custom handwritten genera-
tors. We give a precise semantics for Luck, reminiscent
of those for probabilistic languages [7], and prove key
theorems about its behavior, including the soundness and
completeness of random generation with respect to a
straightforward predicate semantics.

Extended Abstract
Since being popularized by QuickCheck [4], PBT has be-
come a standard technique for improving software qual-
ity across a wide variety of programming languages and
for streamlining interaction with mechanical proof assis-
tants [2, 9, etc].

Property-based testing tools require specifications of
software artifacts in the form of executable predicates,
that are used to check the artifact’s behavior with respect
to large numbers of randomly generated test cases. Gener-
ating good random tests data is of paramount importance.
Tools like QuickCheck help automate this process leverag-
ing type information. However, for conditional properties
of the form p → q, the default approach of generating
random inputs according to some fixed distribution and
filtering using p can become quite unsatisfactory, espe-
cially when p is a sparce property satisfied by only a small
fraction of possible inputs.

Consider, for example, the property of noninterference
of information flow control systems: Given two machine
states that are indistinguishable to an external observer
(i.e. they only differ in a few locations which are tagged
“secret”), if they both take a step they should remain in-
distinguishable. Trying to test this property by generating

completely arbitrary machine states and hoping that they
will only differ in non-observable locations is bound to
fail [8].

Moreover, controlling the distribution of test data is
also critical. Consider indistinguishability of atoms (val-
ues tagged “secret” or not, where true denotes “secret”):

indist :: (Double,Bool) -> (Double,Bool) -> Bool
indist (x1,l1) (x2,l2) =

l1 == l2 && if l1 then true else x1 == x2

The space of data that satisfy indist is vastly skewed
in favor of “secret” atoms. In fact, for every non-secret
pair of indistinguishable observable atoms, there are 264

atoms that are “secret”. Clearly, a uniform distribution
would lead to inefficient testing.

To overcome these challenges, a QuickCheck user must
provide a custom generator for inputs satisfying p. While
QuickCheck provides a library of combinators for stream-
lining this task, writing such custom generators becomes
increasingly challenging as p becomes more complex.
Moreover, if we are testing an invariant property (such
as the fact that types are invariant under reduction for
some programming language), then the same predicates
appears in both the precondition and the conclution, re-
quiring that we write both a predicate p and a generator
whose outputs all satisfy p. These two artifacts must
then be kept in sync, which can become both a mainte-
nance issue and a rich source of bugs. To enable effective
property-based random testing of complex software ar-
tifacts, we need a better way of writing predicates and
corresponding generators.

A natural idea is to derive an efficient generator for
a given predicate p directly from p itself. Indeed, two
variants of this idea, with complementary strengths and
weaknesses, have been explored in the recent literature—
one based on local choices and backtracking, the other
on general constraint solving. Our language, Luck, syner-
gistically combines these two approaches.

The first approach can be thought of as a kind of
incremental generate-and-test, closely related with the
concept of needed narrowing from functional logic pro-
gramming [1]: rather than generating completely random
valuations and testing them against p, we walk over the
structure of p, instantiating each variable x at the first
point where we meet a constraint involving x. However,

1 December 17, 2015

http://www.cis.upenn.edu/~llamp/
http://www.cis.upenn.edu/~bcpierce/
http://prosecco.gforge.inria.fr/personal/hritcu/
http://www.cse.chalmers.se/~rjmh/
http://www.cse.chalmers.se/~rjmh/
https://github.com/zoep
https://www.eleves.ens.fr/home/xia/


there are cases where purely local choices lead to instan-
tiating variables too early, before the constraints on them
are known, incurring significant backtracking.

The other approach leverages the power of a general
constraint solver to generate a diverse set of valuations
satisfying a predicate. (Constraint solvers are, of course,
also widely applied to directly searching for counterex-
amples. We are interested here in the rather different
task of quickly generating many diverse inputs, so that
we can test systems like compilers whose state spaces
are too large to be exhaustively explored.) This requires
translating the predicate p from its original form—which,
when the artifact under test is a functional program, may
involve datatypes, pattern matching, recursive functions,
etc.—into a form that can be handled by, for instance, an
off-the-shelf SMT solver. However, the overhead of the
constraint solver can make it less efficient than the more
lightweight, local approach of needed narrowing in cases
when the latter does not lead to backtracking. Even more
importantly, the complexity of the translation together
with the complex internals of modern constraint solvers
makes it hard to give the user predictable control over the
distribution of generated valuations.

The complementary strengths of local instantiation
and global constraint solving suggest a hybrid approach,
where limited constraint propagation is used to refine the
domains of unknown variables before instantiation. As
in the local instantiation approach, we sample variables
one at a time, giving us a clear means of controlling the
distribution in the style of QuickCheck. However, rather
than instantiating every variable to a random value as
soon as the first constraint mentioning it is encountered,
we allow the user to specify a more relaxed treatment of
some variables and apply lightweight constraint solving
to refine the domains from which these variables are
sampled.

• We propose a domain-specific language, dubbed Luck,
for writing generators via lightweight annotations on
predicates. Luck combines the strengths of the local
random instantiation and constraint-solving approaches
to generation.

• To place Luck’s design on a firm formal foundation—
in particular, to clarify the interactions between local
instantiation and constraint solving—we introduce a
core calculus into which Luck is desugared. We give
a probabilistic semantics for Core Luck and prove key
theorems: the soundness and completeness of the gener-
ator semantics with respect to a straightforward boolean
predicate interpretation of Core Luck programs, and the
fact that delaying variable instantiation reduces back-
tracking.

Experiments We evaluate Luck’s expressiveness and
efficiency on a collection of common examples from
the random testing literature, using a prototype imple-
mentation based on the translation and semantics. Two
significant case studies show that Luck can be used to find
bugs in an industrial compiler by randomly generating
well-typed lambda terms and to help design information-
flow abstract machines by generating indistinguishable

machine states. Compared to hand-written generators,
these experiments demonstrate comparable bug-finding
effectiveness (measured in test cases generated per coun-
terexample found) and an order-of-magnitude reduction
in the size of testing code. Our current prototype is how-
ever slower (time per test) than hand-written generators
(2× to 20×), but many opportunities for optimization
remain.

Related work Luck lies in the crossroads of many dif-
ferent topics in programming languages; thus, the poten-
tially related literature is huge. The works that are most
closely related to our own are these of Claessen et al. [3]
and Fetscher et al. [6]. Claessen et al. exploit the laziness
of Haskell, combining a needed-narrowing-like technique
with FEAT [5], a tool for functional enumeration of alge-
braic types, to efficiently generate uniformly distributed
random inputs satisfying a precondition. While their use
of FEAT allows them to get uniformity by default, it is
not clear how user control over the resulting distribu-
tion could be achieved. Fetscher et al. [6] also use an
algorithm that makes local choices with the potential to
backtrack in case of failure. Moreover, they add a simple
version of constraint solving, handling equality and dise-
quality constraints. They present two different strategies
for making local choices: uniformly at random, or by
ordering branches based on their branching factor. While
both of these strategies seem reasonable (and somewhat
complementary), there is no way of providing different
distributions if needed.

In the probabilistic programming setting, the closest
work is arguably that on the R2 system [10]. The deno-
tational semantics of Luck can be viewed as a general-
ization of the semantics of PROB to account for giving
the user more control over constraint solving. While in
principle one could use R2 to sample inputs satisfying
a precondition by adding an observe(True) at the end,
doing so for complicated programs would require a lot
of effort. For one, coming up with invariants to allow
the PRE transformation to work for loops is comparable
to proving for cases like indistinguishability and type
safety. In addition, one would need to fine tune the priors
to obtain good testing behavior; when using Luck this
process is facilitated by the established methodology of
collecting statistics a-la QuickCheck.

References
[1] S. Antoy. A needed narrowing strategy. JACM. 2000.

[2] L. Bulwahn. The new Quickcheck for Isabelle - random,
exhaustive and symbolic testing under one roof. CPP. 2012.

[3] K. Claessen, J. Duregård, and M. H. Pałka. Generating con-
strained random data with uniform distribution. FLOPS. 2014.

[4] K. Claessen and J. Hughes. QuickCheck: a lightweight tool
for random testing of Haskell programs. ICFP. 2000.

[5] J. Duregård, P. Jansson, and M. Wang. Feat: Functional enu-
meration of algebraic types. Haskell Symposium. 2012.

[6] B. Fetscher, K. Claessen, M. H. Palka, J. Hughes, and R. B.
Findler. Making random judgments: Automatically generating
well-typed terms from the definition of a type-system. ESOP.
2015.

2 December 17, 2015

https://www.informatik.uni-kiel.de/~mh/papers/JACM00.pdf
https://www.irisa.fr/celtique/genet/ACF/BiblioIsabelle/quickcheckNew.pdf
https://www.irisa.fr/celtique/genet/ACF/BiblioIsabelle/quickcheckNew.pdf
http://publications.lib.chalmers.se/records/fulltext/195847/local_195847.pdf
http://publications.lib.chalmers.se/records/fulltext/195847/local_195847.pdf
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://doi.acm.org/10.1145/2364506.2364515
http://doi.acm.org/10.1145/2364506.2364515
http://users.eecs.northwestern.edu/~baf111/random-judgments/
http://users.eecs.northwestern.edu/~baf111/random-judgments/


[7] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani.
Probabilistic programming. In International Conference on
Software Engineering (ICSE Future of Software Engineering).
2014.

[8] C. Hriţcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vy-
tiniotis, A. Azevedo de Amorim, and L. Lampropoulos. Testing
noninterference, quickly. ICFP. 2013.

[9] F. Lindblad. Property directed generation of first-order test data.
TFP, 2007.

[10] A. V. Nori, C.-K. Hur, S. K. Rajamani, and S. Samuel. R2:
An efficient mcmc sampler for probabilistic programs. In AAAI
Conference on Artificial Intelligence (AAAI). 2014.

3 December 17, 2015

http://research.microsoft.com/apps/pubs/default.aspx?id=208585
http://prosecco.gforge.inria.fr/personal/hritcu/publications/testing-noninterference-icfp2013.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/testing-noninterference-icfp2013.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=211941
http://research.microsoft.com/apps/pubs/default.aspx?id=211941

