
Formalizing Stack Safety as a Security Property
Sean Noble Anderson
Portland State University

ander28@pdx.edu

Roberto Blanco
Max Planck Institute for Security and Privacy

roberto.blanco@mpi-sp.org

Leonidas Lampropoulos
University of Maryland, College Park

leonidas@umd.edu

Benjamin C. Pierce
University of Pennsylvania
bcpierce@cis.upenn.edu

Andrew Tolmach
Portland State University

tolmach@pdx.edu

Abstract—The term stack safety is used to describe a variety
of compiler, run-time, and hardware mechanisms for protecting
stack memory. Unlike “the heap,” the ISA-level stack does not
correspond to a single high-level language concept: different
compilers use it in different ways to support procedural and
functional abstraction mechanisms from a wide range of lan-
guages. This protean nature makes it difficult to nail down what
it means to correctly enforce stack safety.

We propose a formal characterization of stack safety using
concepts from language-based security. Rather than treating
stack safety as a monolithic property, we decompose it into an
integrity property and a confidentiality property for each of the
caller and the callee, plus a control-flow property—five properties
in all. This formulation is motivated by a particular class of
enforcement mechanisms, the “lazy” stack safety micro-policies
studied by Roessler and DeHon [1], which permit functions to
write into one another’s frames, but which taint the changed
locations so that the frame’s owner cannot access them. No
existing characterization of stack safety captures this style of
safety. We capture it here by stating our properties in terms of
the observable behavior of the system.

Our properties go further than previous formal definitions
of stack safety, supporting caller- and callee-saved registers,
arguments passed on the stack, and tail-call elimination. We
validate our properties by using them to distinguish between
correct and incorrect implementations of Roessler and DeHon’s
micro-policies using property-based random testing. Our test
harness successfully identifies several broken variants, including
Roessler and DeHon’s lazy policy; a repaired version of their
policy does pass our tests.

I. INTRODUCTION

Functions in high-level languages, and related abstractions
such as procedures, methods, etc., are units of computation that
call one another to define larger computations in a modular
way. At a low level, each function activation manages its
own data—local variables, spilled temporaries, etc.—as well
as information about the caller to which it must return. The
call stack is the fundamental data structure used to implement
functions, aided by an Application Binary Interface (ABI) that
defines how registers are shared between activations.

From a security perspective, attacks on the call stack are
attacks on the function abstraction itself. Indeed, the stack is an
ancient [2] and perennial [3]–[8] target for low-level attacks,
sometimes involving control-flow hijacking via corrupting the
return address, sometimes memory corruption more generally.
The variety in attacks on the stack is mirrored in the range of

software and hardware protections that aim to prevent them,
including stack canaries [9], bounds checking [10]–[12], split
stacks [13], shadow stacks [14], [15], capabilities [16]–[20],
and hardware tagging [1], [21].

Enforcement mechanisms can be brittle, successfully elim-
inating one attack while leaving room for others. To avoid an
endless game of whack-a-mole, we seek formal properties of
safe behavior that can be proven, or at least rigorously tested.
Such properties can be used as the specification against which
enforcement can be validated; even enforcement mechanisms
that do not fulfill a property benefit from the ability to
articulate why and when they may fail.

Of the mechanisms listed above, many are fundamentally
ill-suited for offering formal guarantees: they may impede
attackers, but do not provide universal protection. Shadow
stacks, for instance, aim to “restrict the flexibility available
in creating gadget chains” [15], not to categorically rule out
attacks. Other mechanisms, such as SoftBound [10] and code-
pointer integrity [13], do aim for stronger guarantees, but not
typically formal ones. To our knowledge, the sole line of work
making a formal claim to protect stack safety is the study of
secure calling conventions by Skorstengaard et al. [19] and
Georges et al. [20].

Mechanisms besides this line of work should also be
amenable to strong formal guarantees. In particular, Roessler
and DeHon [1] present an array of tag-based micro-
policies [22] for stack safety that offer universal protection,
but not yet tied to a particular formal guarantee. Their
most realistic micro-policy, called Lazy Tagging and Clearing
(LTC), makes an interesting performance trade-off: it allows
function activations to write improperly into one another’s
stack frames, but ensures that the owner of the corrupted
memory cannot access it afterward. Under this policy, one
function activation can corrupt another’s memory—just not in
ways that affect observable behavior. Therefore, LTC would
not fulfill Georges et al.’s property (adapted to the tagged
setting). But LTC does arguably enforce stack safety. A
looser, more observational definition of stack safety is needed
to fit this situation.

We propose here a formal characterization of stack safety,
based on the intuition of protecting function activations (both
registers and stack frames) from each other. We use the tools

of language-based security [23], treating function activations
as security principals. We decompose stack safety into a family
of properties describing the integrity and confidentiality of the
caller’s local state and the callee’s behavior during (and after)
the callee’s execution, plus the well-bracketed control flow
(WBCF) property articulated by Skorstengaard et al. [19].
While our properties are motivated by the desire to specify
LTC precisely, they are stated abstractly in the hope that they
can also be applied to other enforcement mechanisms.

We are not attempting to present a universal definition of
stack safety for all systems. While many security properties
can be described at the level of a high-level programming
language and translated to a target machine by a secure
compiler, stack safety cannot be defined in this way, since
“the stack” is not explicitly present in the definitions of most
source languages. It is implied by the semantics of features
such as calls and returns, but is not itself a feature.1 But neither
can stack safety be an entirely satisfying low-level property;
indeed, at the lowest level, the specification of a “well-behaved
stack” is almost vacuous. The ISA is not concerned with such
questions as whether a caller’s frame should be readable or
writable to its callee. Those are the purview of high-level
languages built atop the hardware stack.

Therefore, any low-level treatment of stack safety must
begin by asking: which high-level features does our system
support, and what are their security requirements? Different
answers will beget different properties. We identify and define
five security requirements that a system might try to enforce
upon a function call: well-bracketed control flow, and the
integrity and confidentiality of each of the caller and the callee.
We apply these first to a simple system with very few features,
then to a more realistic one supporting tail-call elimination,
argument passing on the stack, and callee-save registers.

We show that our properties are useful for distin-
guishing between correct and incorrect enforcement using
QuickChick [25], [26], a property-based random testing tool
for Coq. We find that LTC is flawed in a way that undermines
both integrity and confidentiality; after correcting this flaw,
the repaired LTC satisfies all our properties. Moreover, we
modify LTC to protect the features of our more realistic
system, and apply random testing to validate this extended
protection mechanism against the extended properties.

In sum, we offer the following contributions:
• We give a novel characterization of stack safety as a

collection of properties: confidentiality and integrity for
callee and caller, plus well-bracketed control-flow. The
properties are parameterized over a notion of external ob-
servation, allowing them to characterize lazy enforcement
mechanisms.

• We extend these core definitions to describe a realistic
setting with argument passing on the stack, callee-saves
registers, and tail-call elimination. Our model is modular
enough that handling these features is straightforward.

1Contrast Azevedo de Amorim et al.’s work on heap safety [24]: the
concept of the heap figures directly in high-level language semantics and its
security is therefore amenable to a high-level treatment.

• We validate a tag-based enforcement mechanism, Lazy
Tagging and Clearing, via property-based random testing,
find that it falls short, and propose and validate a fix.

In the next section, we give a brief overview of our
framework and assumptions. In Section III, we walk through
a function call in a simple example machine and discuss
informally how each of our properties applies to it. In the
process we motivate the properties from a security perspective.
In Section IV we formalize the machine model, its security
semantics, and the stack safety properties built on these.
Section V describes how to support an extended set of features.
In Section VI we describe the micro-policies that we test, in
Section VII the testing framework itself, and in Sections VIII
and IX related and future work.

The accompanying artifact [APT: what is the state of that?
Depending on conference preferences, should give a URL or
other pointer.] contains formal definitions (in Coq) of our
properties, plus our testing framework. It does not include
proofs: we use Coq primarily for the QuickChick testing
library and to ensure that our definitions are unambiguous.
Formal proofs are left as future work.

II. FRAMEWORK AND ASSUMPTIONS

Stack safety properties need to describe the behavior of ma-
chine code, but they naturally talk about function activations
and stack contents—abstractions that are typically not visible
at machine level. To bridge this gap, our properties are defined
in terms of a security semantics layered on top of the standard
execution semantics of the machine. The security semantics
identifies certain state transitions of the machine as security-
relevant operations, which update a notional security context.
This context consists of an (abstract) stack of function acti-
vations, each associated with a view that maps each machine
state element (memory location or register) to a security class
(active, sealed, etc.) specifying how the activation can access
the element. The action of a security-relevant operation on
the context is defined by a set of rules that describe how the
machine code implements the function abstractoin using the
stack and registers.

Given the security classes of the machine’s state elements,
we define high-level security properties—integrity, confiden-
tiality, and well-bracketed control flow—as predicates that
must hold on each call. These predicates draw on the idea
of variant states from the theory of non-interference, and
a notion of observable events, which might include specific
function calls (e.g., system calls that perform I/O), writes to
special addresses representing memory-mapped regions, etc.
For example, to show that certain locations are kept secret,
it suffices to compare the execution of states which vary
at those locations and check that their traces of observable
events are the same. This structure allows us to talk about
the eventual implact of leaks or memory corruption without
reference to internal implementation details, and to support
lazy enforcement by flagging corruption of values only when
it can actually impact visible behavior.

We introduce these properties by example in Section III
and formally in Section IV. In the remainder of this section
we describe the underlying framework in more detail.

Machine Model: We assume a conventional ISA (e.g.
RISC-V, x86-64, etc.), with registers including a program
counter and stack pointer. We make no particular assumptions
about the provenance of the machine code; in particular, we
do not assume the use of any particular compiler. The machine
may possibly be enhanced with enforcement mechanisms such
as hardware tags [21], [27] or capabilities [16]. If so, we
assume that the behavior of these mechanisms is incorporated
into the basic step semantics of the machine, but we keep the
enforcement state unchanged when constructing variant states.
Failstop behavior by enforcement mechanisms is modeled as
stepping to the same state (and thus silently diverging).

Security Semantics and Property Structure: A security
semantics extends a machine with additional context about
the identities of current and pending functions (which act as
security principals) and about the registers and memory they
require to be secure. This added context is purely notional; it
does not affect the behavior of the real machine. The security
context evolves dynamically through the execution of security-
relevant operations, which include calls, returns, and frame
manipulation. Our security properties are phrased in terms of
this context, often as predicates on future states (“when control
returns to the current function...”) or as relations on traces of
future execution (hyper-properties).

Security-relevant operations abstract over the implementa-
tion details of the actions they take. In this paper, each oper-
ation corresponds to a single underlying machine instruction.
One instruction may perform multiple operations. We assume
that a compiler or other trusted source has provided labels
to disambiguate instructions that have multiple purposes. For
instance, in the tagged RISC-V architecture that we use in our
examples and tests, calls and returns are conventionally per-
formed using the jal (“jump-and-link”) and jalr (“jump-
and-link-register”) instructions, but these instructions might
also be used for other things.

We end up with an annotated version of the machine

transition function written m
ψ̄,e−−→ m′, where m and m are

machine states, e is an (optional) external event, and ψ̄ is a
list of security-relevant operations. We then lift this into a
transition between pairs of machine states and contexts, by
applying a set of operation-specific rules to transform each
state and context to a new context, in parallel with the ordinary
transition on states. The most important rules describe call and
return operations. A call pushes a new view onto the context
stack and changes the class of the caller’s data to protect
it from the new callee; a return reverses these steps. Other
operations can serve to signal how parts of the stack frame
are being used to store or share data, and their corresponding
rules alter the classes of different state elements accordingly.

Exactly which operations and rules are needed depends on
what code features we wish to support. The set of security-
relevant operations (Ψ) covered in this paper is given in

Operation ψ ∈ Ψ Parameters Sections
call target address, argument registers III,IV

stack arguments (base, offset & size) V,VII
return III,IV
alloc offset & size III,IV

public flag V,VII
dealloc offset & size III,IV
tailcall (same as for call) V,VII
promote register, offset & size V-C
propagate source register/address V-C

destination register/address V-C
clear target register/address V-C

TABLE I: Security-relevant operations and their parameters,
with the Sections in which they are first used in the paper.

Table I. A core set of operations covering calls, returns, and
local memory is introduced in the example in Section III
and formalized in Section IV. An extended set covering
simple memory sharing and tail-call elimination is described in
Section V and tested in Section VII. The remaining operations
are needed for the capability-based model in Section V-C.

Views and Security Classes: The security context consists
of a stack of views: functions that map each state element to
a security class: public, free, active , or sealed .

State elements that are outside of the stack—general-
purpose memory used for globals and the heap, as well as
the code region and globally shared registers—are always
labeled public. We place security requirements on some public
elements for purposes of the WBCF property, and a given
enforcement mechanism might restrict their access (e.g., by
rendering code immutable), but for integrity and confidential-
ity purposes they are considered accessible at all times.

For a newly active function, every stack location that is
available for use but not yet initialized is seen as free. From
the perspective of the caller, the callee has no obligations
regarding its use of free elements.

Arguments are marked active , meaning that their contents
may be safely used. When a function allocates memory for its
own stack frame, that memory will also be active . Then, on a
call, active elements that are not being used to communicate
with the new callee will become sealed—reserved for an
inactive principal, and expected to be unchanged when it
becomes active again.

Instantiating the Framework: Conceptually, the following
steps are needed to instantiate the framework to a specific
machine and code style: (i) define the base machine semantics,
including any hardware security enforcement features; (ii)
identify the set of security-relevant operations and rules re-
quired by the code style; (iii) determine how to label machine
instructions with security-relevant operations as appropriate;
(iv) specify the form of observable events.

Threat Model and Limitations: When our properties are
used to evaluate a system, the threat model will depend on the
details of that system. However, there are some constraints
that our design puts on any system. In particular, we must
trust that the security-relevant operations have been correctly
labeled. If a compiled function call is not marked as such,

then the caller’s data might not be protected from the callee;
conversely, marking too many operations as calls will simply
cause otherwise safe programs to be rejected.

We do not assume that low-level code adheres to any
fixed calling convention or implements any particular source-
language constructs. Indeed, if the source language is C,
then high-level programs might contain undefined behavior, in
which case they might be compiled to arbitrary machine code.
A given enforcement mechanism or target architecture might
place additional constraints, particularly on the behavior of
call and return sequences. For instance, extant implementations
tend to assume implicitly that callee-saved registers have their
values maintained by whichever compiler generated their code.
[APT: I do not understand the last sentence. Implementations
of what?] Our properties explicitly state this as a requirement,
which could be enforced by a micro-policy, a well-behaved
compiler, or other enforcement technique.

In general, it is impossible to distinguish buggy machine
code from an attacker. In our examples we will identify one
function or another as an attacker, but we do not require any
static division between trusted and untrusted code, and we aim
to protect even buggy code.

This is a strong threat model, but it does omit some
important aspects of stack safety in real systems: in particular,
it does not address concurrency. Hardware and timing attacks
are also out of scope.

III. PROPERTIES BY EXAMPLE

In this section we introduce our security property definitions
by means of small code examples, using a simplified set
of security-relevant operations for calls, returns, and private
allocations. Figure 1 gives C code and possible corresponding
compiled 64-bit RISC-V code for a function main, which
takes an argument secret and initializes a local variable
sensitive to contain potentially sensitive data. Then main
calls another function f, and afterward performs a test on
sensitive to decide whether to output secret. Since
sensitive is initialized to 0, the test should fail, and
main should instead output the return value of f. Output
is performed by writing to the special global out, and we
assume that such writes are the only observable events in the
system.

The C code is compiled using the standard RISC-V calling
conventions [28]. In particular, the first function argument and
the function return value are both passed in a0. Memory is
byte-addressed and the stack grows towards lower addresses.
We assume that main begins at address 0 and its callee f at
address 100.

We now consider how f might misbehave and violate desir-
able stack safety properties associated with main. To put the
violations in a security framework, suppose that f is actually
an attacker seeking to leak secret. It might do so in a
number of ways, shown as snippets of assembly code in Fig. 2.
Leakage is most obviously viewed as a violation of main’s
confidentiality. In Fig. 2a, f takes an offset from the stack
pointer, accesses secret, and directly outputs it. But more

volatile int out;
void main(int secret) {

int sensitive = 0;
int res = f();
if (sensitive == 42)

out = secret;
else

out = res;
}

0: addi sp,sp,-20 alloc (−20, 20)
4: sd ra,12(sp)
8: sw a0,8(sp)

12: sw zero,4(sp)
16: jal f,ra call ε
20: sw a0,0(sp)
24: lw a4,4(sp)
28: li a5,42
32: bne a4,a5,L1
36: lw a0,8(sp)
40: sw a0,out
44: j L2

L1, 48: lw a0,0(sp)
52: sw a0,out

L2, 56: ld ra,12(sp)
60: addi sp,sp,20 dealloc (0, 20)
64: jalr ra return

. . .

SP

res

4(SP)

sens

8(SP)

sec

12(SP)

ra1 ra2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 1: Example: C and assembly code for main, and layout
of its stack frame; the stack grows to the left.[APT: In this
and later figures, can we lighten the blue backgrounds?]

subtly, even if somehow prevented from outputting secret
directly, f can instead return that value so that main stores
it to out, as in Fig. 2b. Beyond simply reading secret, the
attacker might overwrite sensitive with 42, guaranteeing
that main publishes its own secret unintentionally (Fig. 2c).
Attacks of this kind do not violate main’s confidentiality,
but rather its integrity. In Fig. 2d, the attacker arranges to
return to the wrong instruction, thereby bypassing the check
and publishing secret regardless, violating the program’s
well-bracketed control flow (WBCF). In Fig. 2e, a different
attack violates WBCF, this time by returning to the correct
program counter but with the wrong stack pointer.2

The security semantics for this program is based on the
security-relevant events noted in the right columns of Figs. 1
and 2, namely execution of instructions that allocate or deal-
locate space (specified by an SP-relative offset and size), make
a call (with a specified list of argument registers), or make a
return.

2We pad some of the variants with nops just so that all the snippets have
the same length, which keeps the step numbering uniform in Fig. 3.

100: lw a4,8(sp)
104: sw a4,out
108: li a0,1
112: jalr ra return

(a) Leaking secret directly

100: lw a4,8(sp)
104: mov a0,a4
108: nop
112: jalr ra return

(b) Leaking secret indirectly

100: li a5,42
104: sw a5,4(sp)
108: li a0,1
112: jalr ra return

(c) Attacking sensitive

100: addi ra,ra,16
104: nop
108: nop
112: jalr ra return

(d) Attacking control flow

100: addi sp,sp,8
104: nop
108: nop
112: jalr ra return

(e) Attacking stack pointer integrity

Fig. 2: Example: assembly code alternatives for f as an
attacker.

Our security semantics attaches a security context to the
machine state, which consists of a view V and a stack σ of
pending activations’ views. Figure 3 shows how the security
context evolves over the first few steps of the program. (The
formal details of the security semantics are described in
Section IV, and the context evolution rules are formalized
in Fig. 7.) Execution begins at the start of main, where the
program counter (PC) is zero, and with the stack pointer (SP)
at address 1000. State transitions are numbered and labeled
with a list of security operations, written ↓ ψ between steps.
We write ε for empty lists.

The initial view V0 maps all stack addresses below SP to
free and the remainder of memory to public. The sole used
argument register, a0, is mapped to active; other caller-save
registers are mapped to free and callee-save registers to sealed .
Step 1 allocates a word each for secret, sensitive, and
res, as well as two words for the return address. This has the
effect of marking those bytes active . (We use V J·K to denote
updates to V .)

At step 5, the current principal’s record is pushed onto the
inactive list. The callee’s view is updated from the caller’s such
that all active memory locations become sealed . (For now we

assume no sharing of memory between activations; data is
passed only through argument registers, which remain active.
In the presence of memory sharing, some memory would
remain active, too.) Function f does not take any arguments;
if it did, any registers containing them would be mapped
to active , while any non-argument, caller-saved registers are
mapped to free. In the current example, only register a0 has
a change in security class. All callee-save registers remain
sealed for all calls, so if, in the example, we varied the
assembly code for main so that sensitive were stored
in a callee-save register (e.g. s0) rather than in memory, its
security class would still be sealed at the entry to f. At step
9, f returns, and the topmost inactive view, that of main, is
restored.

We now show how this security semantics can be used to
define notions of confidentiality, integrity, and correct control
flow in such a way that many classes of bad behavior, includ-
ing the attacks in Fig. 2, are detected as security violations.

Well-bracketed Control Flow: To begin with, what if f
returns to an unexpected place (i.e. PC ̸= 20 or SP ̸= 980)?
We consider this to violate WBCF. WBCF is a relationship
between call steps and their corresponding return steps: just
after the return, the program counter should be at the next
instruction following the call, and the stack pointer should be
the same as it was before the call. Both of these are essential
for security. In Fig. 2d, the attacker adds 16 to the return
address and then returns; this bypasses the if-test in the code
and outputs secret. In Fig. 2e, the attacker returns with
SP′ = 988 instead of the correct SP = 980. In this scenario,
given the layout of main’s frame,

SP ↓ SP′ ↓
res sens sec ra1 ra2

main’s attempt to read sensitive will instead read part of
the return address, and its attempt to output res will instead
output secret.

Before the call, the program counter is 16 and the stack
pointer is 980. So we define a predicate on states that should
hold just after the return: Ret m ≜ m[PC] = 20∧m[SP] = 980.
We can identify the point just after the return (if a return
occurs) as the first state in which the pending call stack is
smaller than it was just after the call. WBCF requires that if
m is the state at that point, then Ret m holds. (This property
is formalized in Table II, line 1).

Stack Integrity: Like WBCF, stack integrity defines a
condition at the call that must hold upon return. This time the
condition applies to all of the memory in the caller’s frame.
In Fig. 3 we see the lifecycle of an allocated frame: upon
allocation, the view labels it active , and when a call is made,
it instead becomes sealed . Intuitively, the integrity of main is
preserved if, when control returns to it, any sealed elements
are identical to when it made the call. Again, we need to
know when a caller has been returned to, and we use the
same mechanism of checking the depth of the call stack. In
the case of the call from main to f, the sealed elements

PC SP Context

. . .︸ ︷︷ ︸
free

SP

↓

. . .︸ ︷︷ ︸
public

a0 a4 a5

0 1000 V0, ε

1
y[alloc (−20, 20)]

. . .︸ ︷︷ ︸
free

SP

↓︸ ︷︷ ︸
active

. . .︸ ︷︷ ︸
public

a0 a4 a5

4 980 V1 = V0J980..999 7→ activeK, ε

2-4
yε

16 980 V1, ε

5
y[call 100 ε]

. . .︸ ︷︷ ︸
free

SP

↓︸ ︷︷ ︸
sealed

. . .︸ ︷︷ ︸
public

a0 a4 a5

100 980 V2 = V1J980..999 7→ sealed , a0 7→ freeK, [V1]

6-8
yε

112 980 V2, [V1]

9
y[return]

. . .︸ ︷︷ ︸
free

SP

↓︸ ︷︷ ︸
active

. . .︸ ︷︷ ︸
public

a0 a4 a5

20 980 V1, ε

Fig. 3: Execution of example up through the return from f. In stack diagrams, addresses increase to the right, stack grows to
the left, and boxes represent 4-byte words.

are the addresses 980 through 999 and callee-saved registers
such as the stack pointer. Note that callee-saved registers often
change during the call—but if the caller accesses them after
the call, it should find them restored to their prior value.

While it would be simple to define integrity as “all sealed
elements retain their values after the call,” this would be
stricter than necessary. Suppose that a callee overwrites some
data of its caller, but the caller never accesses that data (or
only does so after re-initializing it). This would be harmless,
with the callee essentially using the caller’s memory as scratch
space, but the caller never seeing any change.

For a set of elements K, a pair of states m and n are K-
variants if their values an only disagree on elements in K.
We say that the elements of K are irrelevant in m if they
can be replaced by arbitrary other values without changing
the observable behavior of the machine. All other elements
are relevant.3

We define caller integrity (CLRI) as the property that every
relevant element that is sealed under the callee’s view is
restored to its original value at the return point. (This property
is formalized in Table II, line 2).

In our example setting, the observation trace consists of the
sequence of values written to out. The example in Fig. 2c
modifies the value of sensitive, which is sealed . Figure 4
shows the state just after the call at step 5, assuming that
sec is 5. [APT: But the figure seems to show several states.
Unclear!] Similar to WBCF, we define Int as a predicate on
states that holds if all relevant sealed addresses in m are the

3This story is slightly over-simplified. If an enforcement mechanism
maintains additional state associated with elements, such as tags, we don’t
want that state to vary. Formal definitions of variants and relevance that
incorporate this wrinkle are given in Section IV-D. [SNA: Might need to
make this concept a touch more explicit in Section IV-D, or else promise a
little less here.]

res

0

sens

0

sec

5

ra

0 0w�
res

0

sens

42
sec

5

ra

0 0︷ ︸︸ ︷
res

0

sens

42
sec

5

ra

0 0

res

0

sens

0
sec

5

ra

0 0

↪→out

5

↪→out

1

Fig. 4: Integrity Violation[APT: Unclear how these states are
related. Extend caption? And what do the colors means?]

same as after step 5. We require that Int hold on the state
following the matching return, which is reached by step 9.
Here sensitive has obviously changed, but is it relevant?
[APT: Rest of this paragraph is still not very clear, especially
in (non-?)relation to the figure.] Consider a variant state in
which sensitive has any other value, say 43. As execution
continues after the return from the original state, it passes
the if-test on sensitive, whereas the execution from
the variant does not, resulting in differing outputs. Therefore
sensitive is relevant, so Int does not hold, and integrity
has indeed been violated.

Caller Confidentiality: We treat confidentiality as a form
of non-interference as well: the confidentiality of a caller
means that its callee’s behavior is dependent only on publicly
visible data, not the caller’s private state. This also requires

res

0

sens

0

sec

5

ra

0 0︷ ︸︸ ︷
res

0

sens

0

sec

5

ra

0 0

res

1

sens

2

sec

3

ra

4 5wwww�
↪→out

5 ̸≈
↪→out

3

wwww�
res

0

sens

0

sec

5

ra

0 0

res

1

sens

2

sec

3

ra

4 5

Fig. 5: Internal Confidentiality Violation

res

0

sens

0

sec

5

ra

0 0︷ ︸︸ ︷
res

0

sens

0

sec

5

ra

0 0

res

1

sens

2

sec

3

ra

4 5wwww�
a0

0
a0

6

wwww�
res

0

sens

0

sec

5

ra

0 0

res

1

sens

2

sec

3

ra

4 5

a0

5
a0

3

Fig. 6: Return-time Confidentiality Violation

that the callee initialize memory before reading it. As we saw
in the examples, we must consider both the observable events
that the callee produces during the call and the changes that
the callee makes to the state that might affect the caller after
the callee returns.

Consider the state after step 5, 5with the attacker code from
Fig. 2a. We take a variant state over the set of elements that are
sealed in V2 (see Fig. 5). If we take a trace of execution from
each state until it returns, the traces may differ, in this case
outputting 5 (the original value of secret) and 4 [APT: 3???]
(its value in the variant) respectively. This is a violation of
internal confidentiality (formalized in Table II, line 3a).

But, in Fig. 2b, we also saw an attacker that exfiltrated
the secret by reading it and then returning it, in a context
where the caller would output the returned value. Figure 6
shows the behavior of the same variants under this attacker,
but in this case, there is no output during the call. Instead
the value of secret is extracted and placed in a0, the
return value register. In this case, a0 has changed during
the call, and the return states do not agree on its value.
We can therefore deduce that it carries some information

derived from the original varied elements. By contrast, the
sealed stack frame has not changed during the call, so the
fact that it varies between the return states represents that
the initial states disagreed, not a leak. [APT: Last sentence
still quite mysterious.] Unless a0 happens to be irrelevant
to the caller, this example is a violation of what we term
return-time confidentiality (formalized in Table II, line 3b).
[SNA: Consider connections to robust declassification. Low
priority.]

Structurally, return-time confidentiality resembles integrity,
but now dealing with variants. We begin with a state imme-
diately following a call, m. We consider an arbitrary variant
state, n, which may vary any element that is sealed or free, i.e.,
any element that is not used legitimately to pass arguments.
Caller confidentiality therefore can be thought of as the callee’s
insensitivity to elements in its initial state that are not part of
the caller-callee interface.

We define a binary relation Conf on pairs of states, which
holds on eventual return states m′ and n′ if all relevant
elements are uncorrupted relative to m and n. An element is
corrupted if it differs between m′ and n′, and it either changed
between m and m′ or between n and n′.

Finally, we define caller confidentiality (CLRC) as the com-
bination of internal and return-time confidentiality (Table II,
line 3).

The Callee’s Perspective: We presented our initial ex-
ample from the perspective of the caller, but a callee may
also have privilege that its caller lacks, and which must be
protected from the caller. Consider a function that makes a
privileged system call to obtain a secret key, and uses that
key to perform a specific task. An untrustworthy or erroneous
caller might attempt to read the key out of the callee’s memory
after return, or to influence the callee to cause it to misuse the
key itself!

Where the caller’s confidentiality and integrity are con-
cerned with protecting specific, identifiable state—the caller’s
stack frame—their callee equivalents are concerned with en-
forcing the expected interface between caller and callee. Com-
munication between the principals should occur only through
the state elements that are designated for the purpose: those
labeled public and active .

Applying this intuition using our framework, callee con-
fidentiality (CLEC) turns out to resemble CLRI, extended to
every element that is not marked active or public at call-time.
The callee’s internal behavior is represented by those elements
that change over the course of its execution, and which are not
part of the interface with the caller. At return, those elements
should become irrelevant to the subsequent behavior of the
caller.

Similarly, in callee integrity (CLEI), only elements marked
active or public at the call should influence the behavior of the
callee. It may seem odd to call this integrity, as the callee does
not have a private state. But an erroneous callee that performs
a read-before-write within its stack frame, or which uses a
non-argument register without initializing it, is vulnerable to
its caller seeding those elements with values that will change

its behavior. The fact that well-behaved callees have integrity
by definition is probably why callee integrity is not typically
discussed.

IV. FORMALIZATION

We now give a formal description of our machine model,
security semantics, and properties. Our definitions abstract
over: (i) the details of the target machine architecture and ABI,
(ii) the set of security-relevant operations and their effects on
the security context, (iii) the set of observable events, and (iv)
a notion of value compatibility.

A. Machine

The building blocks of a machine are words and registers.
Words are ranged over by w and, when used as addresses,
a, and are drawn from the set W . Registers in the set R are
ranged over by r, with the stack pointer given the special name
SP; some registers may be classified as caller-saved (CLR) or
callee-saved (CLE). Along with the program counter, PC, these
are referred to as state elements k in the set K ::= PC|W|R.

A machine state m ∈M is a map from state elements to a
set V of values. Each value v contains a payload word, written
|v|. We write m[k] to denote the value of m at k and m[v] as
shorthand for m[|v|]. Depending on the specific machine being
modeled, values may also contain other information relevant
to hardware enforcement (such as a tag). When constructing
variants (see Section IV-D, this additional information should
not be varied. To capture this idea, we assume a given
compatibility equivalence relation ∼ on values, and lift it
element-wise to states. Two values should be compatible if
their non-payload information (e.g. their tag) is identical.

The machine has a step function m
ψ̄,e−−→ m′. Except for

the annotations over the arrow, this function just encodes the
usual ISA description of the machine’s instruction set. The
annotations serve to connect the machine’s operation to our
security setting: ψ̄ is a list of security-relevant operations
drawn from an assumed given set Ψ, and e is an (potentially
silent) observable event; these are described further below.

B. Security semantics

The security semantics operates in parallel with the ma-
chine. Each state element (memory word or register) is given
a security class l ∈ {public, active, sealed , free}. A view
V ∈ VIEW maps elements to security classes. For any
security class l, we write l(V) to denote the set of elements
k such that V k = l.[APT: Did you ever use this? I’ve edited
some places to do do.] The initial view V0 maps all stack
locations to free, all other locations to public, and registers
based on which set they belong to: sealed for callee-saved,
free for caller-saved except for those that contain arguments at
the start of execution, which are active , and public otherwise.

A (security) context is a pair of the current activation’s view
and a list of views representing the call stack (pending inactive
principals), ranged over by σ.

c ∈ C ::= VIEW × list VIEW

range r off sz m ≜ {m[r] + i|off ≤ i < off + sz}

K = range SP off sz m ∩ free(V)
V ′ = V Ja 7→ active | a ∈ KK

Op m (alloc off , sz) (V, σ) = (V ′, σ)

K = range SP off sz m ∩ active(V)
V ′ = V Ja 7→ free | a ∈ KK

Op m (dealloc off , sz) (V, σ) = (V ′, σ)

V ′ = V Jr 7→ free|r ∈ CLRKJr 7→ public|r ∈ rargsK
V ′′ = V ′Ja 7→ sealed |a ∈ active(V ′)K

Op m (call atarget rargs) (V, σ) = (V ′′, V :: σ)

Op m return (, (V, σ′)) = (V, σ′)

Fig. 7: Basic Operations[APT: This was absolutely full of
problems. Please triple-check my changes. And do we really
need two-stage calculation in the call rule, or was that just to
avoid type-setting issues?]

The initial context is c0 = (V0, ε).
Section III describes informally how the security context

evolves as the system performs security-relevant operations.
Formally, we combine each machine state with a context to
create a combined state s = (m, c) and lift the transition to
=⇒ on combined states. At each step, the context updates
based on an assumed given function Op :M → C → Ψ →
C . Since a single step might correspond to multiple operations,
we apply Op as many times as needed, using foldl .

m
ψ,e−−→ m′ foldl (Op m) c ψ = c′

(m, c)
ψ, e
=⇒ (m′, c′)

A definition of Op is most convenient to present decom-
posed into rules for each operation. We have already seen
the intuition behind the rules for alloc, call, and ret. For
the machine described in the example, the Op rules would be
those found in Fig. 7. Note that Op takes as its first argument
the state before the step.

C. Events and Traces

We abstract over the events that can be observed in the
system, assuming just a given set EVENTS that contains
at least the element τ , the silent event. Other events might
represent certain function calls (i.e., system calls) or writes
to special addresses representing memory-mapped regions. A
trace is a nonempty, finite or infinite sequence of events,
ranged over by E . We use “·” to represent “cons” for traces,
reserving “::” for list-cons.

We are particularly interested in traces that end just after a
function returns. We define these in terms of the depth d of
the security context’s call stack σ. We write d ↪→ s for the
trace of execution from a state s up to the first point where the
stack depth is smaller than d, defined coinductively by these
rules:

|σ| < d
d ↪→ (m, (V, σ)) = τ

(m, (V, σ))
ψ, e
=⇒ (m′, c′) |σ| ≥ d d ↪→ (m′, c′) = E

d ↪→ (m, (V, σ)) = e · E
When d = 0, the trace will always be infinite[APT: why?
remind us about machine not halting (if that is the reason)?];
in this case we omit d and just write ↪→ s.

Two event traces E1 and E2 are similar, written E1 ≂ E2,
if the sequence of non-silent events is the same. That is, we
compare up to deletion of τ events. Note that this results in
an infinite silent trace being similar to any trace. So, a trace
that silently diverges due to a failstop will fulfill this property
[APT: what property?] vacuously.

E ≂ E
E1 ≂ E2

e · E1 ≂ e · E2

E1 ≂ E2
τ · E1 ≂ E2

E1 ≂ E2
E1 ≂ τ · E2

D. Variants, corrupted sets, and “on-return” assertions

Two (compatible) states are variants with respect to a set
of elements K if they agree on the value of every element
not in K. Our notion of non-interference involves comparing
the traces of such K-variants. We use this to define sets
of irrelevant elements. Recall that ∼ is a policy-specific
compatibility relation.

Definition 1. The difference set of two machine states m
and m′, written ∆(m,m′), is the set of elements k such that
m[k] ̸= m′[k].

Definition 2. Machine states m and n are K-variants, written
m ≈K n, if m ∼ n and ∆(m,n) ⊆ K.

Definition 3. An element set K is irrelevant to state (m, c),
written (m, c) ∥ K, if for all n such that m ≈K n,
↪→ (m, c) ≂ ↪→ (n, c).

When comparing the behavior of variant states, we need a
notion of how their differences have influenced them.

Definition 4. The corrupted set 3̄(m,m′, n, n′) is the set
(∆(m,m′) ∪∆(n, n′)) ∩∆(m′, n′).

If we consider two execution sequences, one from m to m′

and the other from n to n′, then 3̄(m,m′, n, n′) is the set
of elements that change in one or both executions and end
up with different values. Intuitively, this captures the effect of
any differences between m and n, i.e., the set of values that
are “corrupted” by those differences.

Our “on-return” assertions are defined using a second-order
logical operator d ↑ P , pronounced “P holds on return from
depth d,” where P is a predicate on machine states. This
is a coinductive relation similar to “weak until” in temporal
logic—it also holds if the program never returns from depth
d.

|σ| < d P m
(d ↑ P) (m, (V, σ)) RETURNED

|σ| ≥ d (d ↑ P) (m′, c′)

(m, (V, σ))
ψ, e
=⇒ (m′, c′)

(d ↑ P) (m, (V, σ))
STEP

Similarly, we give a analogous binary relation for use in
confidentiality. We define ⇑ so that (m, c) (d ⇑ R) (m′, c′)
holds if R holds on the first states that return from depth d after
(m, c) and (m′, c′), respectively. Once again, ⇑ is coinductive.

|σ1| < d |σ2| < d m1 R m2

(m1, (V1, σ1)) (d ⇑ R) (m2, (V2, σ2))
RETURNED

|σ1| ≥ d (m1, (V1, σ1))
ψ, e
=⇒ (m′

1, c
′
1)

(m′
1, c

′
1) (d ⇑ R) (m2, (V2, σ2))

(m1, (V1, σ1)) (d ⇑ R) (m2, (V2, σ2))

LEFT

|σ2| ≥ d (m2, (V2, σ2))
ψ, e
=⇒ (m′

2, c
′
2)

(m1, (V1, σ1)) (d ⇑ R) (m′
2, c

′
2)

(m1, (V1, σ1)) (d ⇑ R) (m2, (V2, σ2))

RIGHT

E. Properties

Finally, the core property definitions are given in Table II,
arranged to show their commonalities and distinctions. Each
definition gives a criterion quantified over states s that imme-
diately follow call steps. If an execution includes a transition
s′

ψ
=⇒ s where call a r ∈ ψ̄, then s is the target of a call.

As a shorthand, we write that each property is defined by a
criterion that must hold “for all call targets s,” or, in the case
of WBCF, “for all call steps s =⇒ s′.”

1. WBCF: Given a call step (m, (V, σ)) =⇒
(m′, (V ′, σ′)), we define the predicate Ret to hold on states
m′′ whose stack pointer matches that of m and whose program
counter is at the next instruction. A system enjoys WBCF if,
for every call transition, Ret holds just after the callee returns
(i.e., the call stack shrinks).

2. CLRI: When the call target is (m, (V, σ)), we define
the predicate Int to hold on states m′ if any elements that are
both sealed in V and in the difference set between m and m′

are irrelevant. A system enjoys CLRI if, for every call, Int
holds just after the corresponding return.

3. CLRC: When the call target is (m, (V, σ)), we begin
by taking an arbitrary n that is a K-variant of m, where K is
the set of sealed elements in V . We require that two clauses
hold. On line 3a, the behavior of a trace from (m, (V, σ)) up
to its return must match that of (n, (V, σ)). On line 3b, we
define a relation Conf that relates states m′ and n′ if their
corrupted set (relative to m and n) is irrelevant, and require
that it hold just after the returns from the callees that start at
(m, (V, σ)) and (n, (V, σ)). A system enjoys CLRC if both
clauses hold for every call.

4. CLEC: We consider the callee’s private behavior to
be any changes that it makes to the state outside of legitimate
channels—elements marked active or public. The remainder
should be kept secret, which is to say, irrelevant to future
execution. Similar to CLRI, given a call target (m, (V, σ)), we
define a predicate CConf to hold on states m′ if the difference
set between m and m′, excluding active or public locations,

1 WBCF ≜ (|σ′| ↑ Ret) (m′, (V ′, σ′)) where Ret m′′ ≜ m′′[SP] = m[SP] for all calls (m, (V, σ)) =⇒ (m′, (V ′, σ′))
∧m′′[PC] = m[PC] + 4

2 CLRI ≜ (|σ| ↑ Int) (m, (V, σ)) where Int m′ ≜ m′ ∥ (sealed(V) ∩∆(m,m′)) for all call targets (m, (V, σ))

3 CLRC ≜ ∀n s.t. m ≈K n, where K = sealed(V) for all call targets (m, (V, σ))
3a |σ| ↪→ (m, (V, σ)) ≃ |σ| ↪→ (n, (V, σ))

3b and (m, (V, σ)) (|σ| ⇑ Conf) (n, (V, σ)) where (m′ Conf n′) ≜ m′ ∥ 3̄(m,n,m′, n′)
4 CLEC ≜ (|σ| ↑ CConf) (m, (V, σ)) where CConf m′ ≜ m′ ∥ (∆(m,m′)−K) for all call targets (m, (V, σ))

where K = public(V) ∪ active(V)

5 CLEI ≜ ∀n s.t. m ≈K n, where K = K− (public(V) ∪ active(V)) for all call targets (m, (V, σ))
5a |σ| ↪→ (m, (V, σ)) ≃ |σ| ↪→ (n, (V, σ))

5b and (m, (V, σ)) (|σ| ⇑ CInt) (n, (V, σ)) where (m′ CInt n′) ≜ m′ ∥ 3̄(m,n,m′, n′)

TABLE II: Properties[APT: The hardwired +4 is a little sad, but oh well.]

is irrelevant. A system enjoys CLEC if, for every call, CConf
holds just after the corresponding return.

5. CLEI: Callee integrity means that the caller does not
influence the callee outside of legitimate channels. The caller’s
influence can be seen internally, or in corrupted data on return,
just like the caller’s secrets would be under CLRC. So, for a
call target (m, (V, σ)), we take an arbitrary n that is a K-
variant of m, where K is the set of elements that are not
active or public. The remainder of the property is identical to
CLRC.

V. EXTENDED CODE FEATURES

The system we model in Sections III and IV is very simple,
but our framework is designed to make it easy to add support
for additional code features. To support argument passing on
the stack, we just add new parameters to the existing security-
relevant operations, and refine how they update the security
context. The remainder of the properties do not change at all.
To add tail-calls, we add and define a new operation, and since
it is a kind of call, we add it to the definition of call targets.
The rules for the extended security semantics are given in
Fig. 8; the rules in Fig. 7 can be recaptured by instantiating
call with sa as the empty set, and alloc with flag f .

A. Sharing Stack Memory

In our examples, we have presented a vision of stack
safety in which the interface between caller and callee is in
the registers that pass arguments and return values. This is
frequently not the case in a realistic setting. Arguments may
be passed on the stack because there are too many to pass in
registers, as variadic arguments, or because they are composite
types that inherently have pass-by-reference semantics. The
caller may also pass a stack-allocated object by reference in
the C++ style, or take its address and pass it as a pointer.

We refine our call operation to make use of the information
that we have about which stack memory locations contain
arguments. The new annotation sa is a set of triples of a
register, an offset from the value of that register, and a size.
We first define the helpful set passed sa m, then extend the
call operation to keep all objects in passed marked as active
and seal everything else (Fig. 8b).

Using this mechanism, a call-by-value argument passed
on the stack at an SP-relative offset is specified by the
triple (SP, off , sz). In this case, only the immediate callee

gains access to the argument location. A C++-style call-
by-reference argument passed in r is instead specified by
(r, 0, sz), which allows the reference to be passed further down
the stack.[APT: Last sentence is completely mysterious.]

[APT: This needs light revision to reflect fact that Capa-
bilities section is now on same page, not much later!] If
the address of an object is taken directly and passed as a
pointer, we simply classify the object as “public” and give
it no protection against access by other functions. We extend
the alloc operation with a boolean flag, where t indicates
that the allocation is public, and f that it is private. If
space for multiple objects is allocated in a single step, that
step can make multiple allocation operations, each labeled
appropriately. Public objects are labeled public rather than
active , so they are never sealed at a call (Fig. 8a). Providing
more fine-grained control over sharing is desirable, but seems
to require a considerably more complex model; Section V-C
describes one approach, based on capabilities.

B. Tail Calls

The rule for a tail call is similar to that for a normal call.
We do not push the caller’s view onto the stack, but replace it
outright. This means that a tail call does not increase the size
of the call stack, and therefore for purposes of our properties,
all tail calls will be considered to return simultaneously when
the eventual return operation pops the top of the stack.

Since the caller will not be returned to, it does not need
integrity, but it should still enjoy confidentiality. We set its
frame to free rather than sealed to express this. In Table II, we
replace “call targets” with “call or tail call targets” in CLRC,
CLEC, and CLEI.

C. Provenance, Capabilities, and Protecting Objects

Lastly, what if we want to express a finer-grained notion of
safety, in which stack objects are protected unless the function
that owns them intentionally passes a pointer to them? This
can be thought of as a capability-based notion of security.
Capabilities are unforgeable tokens that grant access to a
region of memory, typically corresponding to valid pointers
to that region. As such, this capability safety relies on some
preexisting notion of pointer validity, i.e. pointer provenance.
Memarian et al.’s PVI [29] (provenance via integer) mem-
ory model is a good option: it annotates pointers with the
identity of the object they first pointed to, and propagates the

range r off sz m ≜ {m[r]+i|off ≤ i < off + sz}

K = range SP off sz m ∩ {a | V a = free}
V ′ = V Ja 7→ sealed | a ∈ KK

Op m (alloc f off , sz) (V, σ) = (V ′, σ)

K = range SP off sz m ∩ {a | V a = free}
V ′ = V Ja 7→ public | a ∈ KK

Op m (alloc t off , sz) (V, σ) = (V ′, σ)

b = m[SP] + off
V ′ = V Ja 7→ free|b ≤ a < b+ sz ∧ V a = activeK

Op m (dealloc off , sz) (V, σ) = (V ′, σ)

(a) Memory Allocation

passed sa m =
⋃

(r,off ,sz)∈sa

range r off sz m

V ′ = V Jr 7→ free|r ∈ CLRKJr 7→ public|r ∈ rargsK
V ′′ = V ′Ja 7→ sealed |V ′ a = active ∧ a ̸∈ (passed sa m)K

Op m (call atarget rargs sa) (V, σ) = (V ′′, V :: σ)

V ′ = V Jr 7→ free|r ∈ CLRKJr 7→ public|r ∈ rargsK
V ′′ = V ′Ja 7→ free|V ′ a = active ∧ a ̸∈ (passed sa m)K
Op m (tailcall atarget rargs sa) (V, σ) = (V ′, σ)

σ = (V, aret, asp) :: σ
′

Op m return (, σ) = (V, σ′)

(b) Calls with Argument Passing on the Stack

Fig. 8: Operations supporting tail calls and argument passing on stack.[APT: This needs similar edits to the previous operations
figure. In particular, same question about the V ′′ in call and tailcall.]

annotation when the pointer is copied and when operations
are performed on it. This constitutes a substantial addition to
the security context, which is why this enhancement is more
speculative than the others, and we have not tested it.

We can model the provenance model as a trio of additional
security-relevant operations: one which declares a register to
contain a valid pointer, one which transmits the provenance of
a pointer from one element to another, and one which clears
the provenance (for instance, when a pointer is modified in
place in a way that makes it invalid).

In addition to the normal call stack, our security context will
carry a map ρ from elements to memory regions, represented
as a base and a bound c = (V, σ, ρ). Existing operations are
extended to preserve the value of ρ, and the new operations
work as follows[APT: Put these and tweaked call rule into a
separate figure in the same style as the existing two]:

ψ = promote rdst (rbase, off , sz)
ρ′ = ρ[rdst 7→ range rbase off sz]
Op m ψ (V, σ, ρ) = (V, σ, ρ′)

PROMOTE

ψ = propagate ksrc kdst
ρ′ = ρ[kdst 7→ ρ[ksrc]]

Op m ψ (V, σ, ρ) = (V, σ, ρ′)
PROPAGATE

ψ = clear k
Op m ψ (V, σ, ρ) = (V, σ, ρ[k 7→ ∅]) CLEAR

We now have a notion of provenance, and must integrate
it into the definition of stack safety. We essentially generalize
the above notion of passing: we will consider a caller to have
intentionally passed an object if that object is reachable by
a capability that has been passed to the callee. This includes
capabilities passed indirectly, by being stored in an object that
is in turn passed. Formally, we call this set capped , and define
it recursively:

capped K ρ ≜
⋃
k∈K

{k} ∪ capped K ′ ρ where

K ′ = {k′|ρ[k] = (base, bound) ∧ base ≤ k′ < bound}

We then tweak the call operation to seal only objects that
are in capped , or the previously defined passed .

ψ = call atarget rargs sa
V ′ = V Jr 7→ free|r ∈ CLRKJr 7→ public|r ∈ rargsK

K = {a|V ′ a = active ∧ a ̸∈ (passed sa m) ∪ (capped rargs ρ)}
V ′′ = V ′JK 7→ sealedK

Op m ψ (V, σ, ρ) = (V ′′, V :: σ, ρ)

In the resulting property, once an object is sealed (because
its capability has not been passed to a callee), subsequent
nested calls can never unseal it. On the other hand, an object
that is passed via a pointer may be passed on indefinitely.

VI. ENFORCEMENT

We implement and test two micro-policies inspired by
Roessler and DeHon [1]: Depth Isolation (DI) and Lazy
Tagging and Clearing (LTC). Their precise connection to
Roessler and DeHon’s work is discussed below. They share
a common structure: each function activation is assigned a
“color” n representing its identity. Stack locations belonging
to that activation are tagged STACK n, and while the activation
is running, the tag on the program counter (PC tag) is PC n.
Stack locations not part of any activation are tagged UNUSED.

In DI , n always corresponds to the depth of the stack when
the function is called. A function must initialize its entire
frame upon entry in order to tag it, and then clear the frame
before returning. During normal execution, the micro-policy
rules only permit load and store operations when the target
memory is tagged with the same depth as the current PC tag, or,
for store operations, if the target memory is tagged UNUSED.

In LTC, a function neither initializes the frame at entry nor
clears it at exist; instead, it simply sets each location’s tag to
the PC tag when that location is written. It does not check if
those writes are legal! If the PC tag is PC n, then any stack
location that recieves a store will be tagged STACK n. On a
load, the micro-policy failstops if the source memory location
is tagged UNUSED or STACK n for some n that doesn’t match
the PC tag.

To implement this discipline, blessed instruction sequences
appear at the entry and exit of each function, which manipulate
tags as just described while performing the usual tasks of
saving/restoring the return address to/from the stack and
adjusting the stack pointer. A blessed sequence uses further
tags to guarantee that the full sequence executes from the
beginning—no jumping into the middle.

Applicability to Roessler & DeHon [1]:: For Roessler
and DeHon (henceforward R&D), Lazy Tagging and Lazy
Clearing are both optimizations that can be applied to their
Depth Isolation policy. Our version of LTC corresponds to
Depth Isolation with both optimizations applied. How closely
do our properties correspond to the specifications of their
policies?

R&D differentiate between memory safety policies (without
lazy optimization) and data-flow integrity policies (with lazy
optimization). Our properties are phrased in terms of data
flow, and we apply them to both optimized and non-optimized
Depth Isolation. R&D do not attempt to define explicit formal
properties, but they do list the behaviors that they expect their
data-flow integrity policies to prevent, namely: reads from
sealed objects (our CLRC), writes to sealed objects if they
are later read (our CLRI), and reads from deallocated objects
(our CLEC). They also note that Lazy Clearing prevents
uninitialized reads, which corresponds roughly to our CLEI.

R&D note a flaw in Depth Isolation: because function
activations are identified by depth, a dangling pointer into a
stack frame might be usable when a new frame is allocated
at the same depth. Our testing does not discover this flaw,
because we do not test address-taken objects, but it discovers
a related flaw under Lazy Tagging and Clearing that does not
require an object’s address to be taken. If an activation reads
a location that was previously written by an earlier activation
at the same depth, it will violate callee confidentiality. If that
location was in a caller’s frame, it also violates caller integrity
and confidentiality.

R&D propose addressing the dangling-pointer issue by
tracking both the depth of the current activation and the static
identity of the active function. This would not eliminate all
instances of this issue, but it would require the confidentiality-
violating activation to be of the same function that wrote the
data in the first place, which is a significantly higher bar.
We propose instead tracking every activation uniquely, which
should eliminate the issue entirely—and does in our tests.

Protecting Registers: R&D do not need to protect regis-
ters, since they include the compiler in their trusted computing
base, but we target threat models that do not. In particular,
CLRI requires callee-saved registers to be saved and restored
properly. We extend DI and LTC so that callee-saved regis-
ters are also tagged with the color of the function that is using
them. In DI they are tagged as part of the entry sequence,
while in LTC they are tagged when a value is placed in them.

VII. VALIDATION THROUGH RANDOM TESTING

There are several ways to evaluate whether an enforcement
mechanism enforces the above stack safety properties. Ideally

such validation would be done through formal proof over the
semantics of the enforcement-augmented machine. However,
while there are no fundamental barriers to producing such a
proof, it would be considerable work to carry out for a full
ISA like RISC-V and complex enforcement mechanisms like
Roessler and DeHon’s micro-policies. We therefore choose to
systematically test their micro-policies. Our primary testing
targets are the eager Depth Isolation and the Lazy Per-
Activation Tagging and Clearing micro-policies.[APT: Reads
awkwardly coming just after last section.]

We use a Coq specification of the RISC-V architecture [30],
extend it with a runtime monitor implementing a stack safety
micro-policy, and test it using QuickChick [26], a randomized
property-based testing framework. QuickChick works by gen-
erating random programs, executing them, and checking that
they fulfill our criteria.

Such testing is sound—it will not produce false positives—
but necessarily incomplete. We might test a flawed policy but
fail to generate a program that exploits the flaw. Additionally,
detecting violations of noninterference-style properties is de-
pendent on choosing appropriate variant states, so it is possible
to generate a dangerous program but have it pass the test due
to variant selection. We increase our confidence in our test
coverage by mutation testing, in which we intentionally inject
flaws into the policies and demonstrate that testing can find
them.

A. Test Generation

To use QuickChick, we develop random test-case generators
that produce an initial RISC-V machine state tagged appro-
priately for the micro-policy (see Section VI), including a
code region containing a low-level program. They also produce
the meta-information about how instructions in that program
map to security-relevant operations, which would normally be
provided by the compiler.

Our generators build on the work of Hriţcu et al. [31],
[32], which introduced generation by execution, a technique
that produces programs that lead to longer executions—and
hopefully towards more interesting behaviors as a result. Each
step of generation by execution takes a partially instantiated
machine state and attempts to generate an instruction that
makes sense locally (e.g., jumps go to a potentially valid code
location, loads read from a potentially valid stack location).
The generator repeats this process for an arbitrary number
of steps, or until it reaches a point where the machine cannot
step any more. Each time it generates a call or return, it places
the appropriate policy tags on the relevant instruction(s) and
records the operation.

We extend Hriţcu et al.’s technique with additional state-
fulness to avoid early failstops. For example, immediately
after a call, we increase the probability of generating code
that initializes any stack-allocated variables. To allow for
potential attack vectors to manifest, the generator periodically
relaxes those constraints and generates potentially ill-formed
code, such as failing to initialize variables, writing outside

of the current stack frame, or attempting an ill-formed return
sequence,

B. Property-based Testing

Once a test program is generated, QuickChick tests it against
a property. A typical hyperproperty testing scheme might do
this by generating a pair of initial variant states, executing
them to completion, and comparing the results. We extend
this procedure to handle the nested nature of confidentiality.

For our setup to naı̈vely test the confidentiality of every
call, it would need to create a variant state at each call point,
execute it until return, then generate a post-call variant based
on any tainted values. The post-call variant would execute
alongside the “primary” execution until the test is finished.
This results in tracking a number of variant executions that is
linear in the total number of calls!

For better performance, we instead maintain a single “post-
call taint” execution that executes in parallel with the original.
Everytime a function returns with elements containing tainted
data[APT: I don’t understand what that is], the test process
sets those elements to random values in the tainted execution.
So, at any given time, we need only simulate (1) the original
execution, (2) the tainted execution, and (3) one variant
execution for each call on the call stack. This approach makes
testing longer executions substantially faster, at the cost of
making it harder to identify which call is the source of a
failure.

C. Mutation Testing

To ensure the effectiveness of testing against our formal
properties, we use mutation testing [33] to inject errors
(mutations) in a program that should cause the property of
interest (here, stack safety) to fail, and ensure that the testing
framework can find them. The bugs we use for our evaluation
are either artificially generated by us (deliberately weakening
the micro-policy in ways that we expect should break its
guarantees), or actual bugs that we discovered through testing
our implementation. We elaborate on some such bugs below.

For example, when loading from a stack location, Depth
Isolation needs to enforce that the tag on the location being
read is STACK n for some number n and that the tag of the
current PC is PC n for the same depth n. We can relax that re-
striction by omitting the check (bug LOAD NO CHECK DI).
Similarly, when storing to a stack location, the correct micro-
policy needs to ensure that the tag on the memory location is
either UNUSED or has again the same depth as the current PC
tag. Relaxing that constraint causes violations to the integrity
property (bug STORE NO CHECK).

In additional intentional mutations, our testing catches errors
in our own implementation of the enforcement mechanism,
including one interesting bug where the initial function’s
frame included space allocated for its return address, but this
uninitialized (and therefore UNUSED-tagged) space was treated
as private data but left unprotected. We added this to our set
of mutations as HEADER NO INIT.

Bug Property Violated MTTF (s) Tests
LOAD NO CHECK DI Confidentiality 24.2 13.3

STORE NO CHECK Integrity 26.9 26
HEADER NO INIT Integrity 69.5 76.3
PER DEPTH TAG Integrity 189.7 8342.5

LOAD NO CHECK LT Integrity 23.5 12.0
LOAD NO CHECK LT Confidentiality 19.2 695.5
STORE NO UPDATE Integrity 70 80.6
STORE NO UPDATE Confidentiality 4.9 88.5

TABLE III: MTTF for finding bugs in erroneous policy
enforcement mechanisms[APT: what does the horizontal line
mean?]

D. Results

The mean-time-to-failure (MTTF) and average number of
tests for various bugs can be found in Table III, along with the
average number of tests it took to find the failure. Experiments
were run in a desktop machine equipped with i7-4790K CPU
@ 4.0GHz with 32GB RAM.

For LTC, the original micro-policy, implemented as
PER DEPTH TAG, fails in testing, in cases where data is
leaked between sequential calls. To round out our muta-
tion testing we also check LOAD NO CHECK LT, equiv-
alent to its counterpart in depth isolation, and a version
where stores succeed but fails to propagate the PC tag,
STORE NO UPDATE. It turns out that PER DEPTH TAG is
a comparatively subtle bug, taking longer to catch.

Our properties allow us to identify an enforcement mech-
anism as not really stack safe, and to validate a possible
fix.[APT: This paragraph comes as a bit of a non-sequitur
here.]

VIII. RELATED WORK

The centrality of the function abstraction and its security are
behind the many software and hardware mechanisms proposed
for its protection [1], [9]–[21]. Many enforcement techniques
focus purely on WBCF; others combine this with some degree
of memory protection, chiefly focusing on integrity. Roessler
and DeHon’s Depth Isolation and Lazy Tagging and Clearing
[1] both offer protections corresponding to WBCF, CLRI, and
CLRC, though they do not give a formal description of this.
They are generally not concerned with protecting callees.

To our knowledge, the only other line of work that aims
to rigorously characterize the security of the stack is the
StkTokens-Cerise family of CHERI-enforced secure calling
conventions [18]–[20]. The authors define stack safety as
overlay semantics and related stack safety properties, phrased
in terms of logical relations instead of trace properties. Orig-
inally, they describe “local state encapsulation” [19] in terms
of integrity only (but it has confidentiality, equivalent to CLRI
and CLRC). Their latest paper [20] was inspired by the proper-
ties presented in this paper to extend their formalism to include
confidentiality. When checking if our properties applied to
their old calling convention, they noted that it did not enforce
CLEC, and made sure that their new version would in addition
to building it into their formalism [34]. This demonstrates the
benefit of our choice to explicitly state properties in security

terms: specifying security is hard, and when the spec takes
the form of a “correct by construction” machine, it is easy to
neglect a non-obvious security requirement.

In terms of direct feature comparison with Georges et
al. [20] (the most recent work in the line), with the addition
of confidentiality to their formalism, we are roughly at parity
in terms of the expressiveness of our properties. We have
additionally proposed callee-integrity, but it is probably the
least practical of our properties. We extend our model to
tailcalls, which they do not, and to the passing of pointers to
stack objects. They discuss stack objects and the interaction
between stack and heap, but their calling convention does not
guarantee safety in the presence of pointer passing without
additional checks. We test a limited degree of pointer passing,
which does not guarantee memory safety for the passed pointer
but which does not undermine the security of its frame, and
we offer an untested formalism for memory-safe passing of
pointers. On the other hand, their properties are validated by
proof, while ours are only tested.

IX. FUTURE WORK

[SNA: Look into wasm compilation per reviewer 1. Low
priority.]

We plan to test our properties against multiple enforcement
mechanisms. The top priority is capability machines, namely
CHERI [35], a modern architecture designed to provide effi-
cient fine-grained memory protection and compartmentaliza-
tion. We want to test the most recent work by Georges et
al. [20], which is designed to enforce analogues of all of our
properties except for CLEI.

It would also be interesting to test a software enforcement
approach. Under a bounds checking discipline [10], all the
pointers in a program are extended with some disjoint meta-
data used to gate memory accesses. These approaches enforce
a form of memory safety, and we would therefore expect them
to enforce CLRI and CLRC. They aim to enforce WBCF
by cutting off attacks that involve memory-safety violations,
but that may not be sufficient. Bounds checking approaches
require substantial compiler cooperation. This is not a problem
for our properties in general, but it is not very compatible with
generation-by-execution of low-level code. A better choice
might be to generate high-level code using a tool like CSmith
[36], or prove the properties instead.

Several popular enforcement mechanisms are not designed
to provide absolute guarantees of security. For example, stack
canaries [9] and shadow stacks [14], [15] are chiefly hardening
techniques: they increase the difficulty of some control-flow
attacks on the stack, but cannot provide absolute guarantees
on WBCF under a normal attacker model. Interestingly, these
are lazy enforcement mechanisms, in that the attack may occur
and be detected some time later, as long as it is detected before
it can become dangerous. That would make our observation-
based formalism a good fit for defining their security, if we
could find a formal characterization of what they do acheive
(perhaps in terms of a base machine with restricted addressing
power).

We have preliminary work on extending our model to
handle C++-style exceptions, which, like tailcalls, obey only a
weakened version of WBCF. We are also exploring extensions
to concurrency, starting with a model of statically allocated co-
routines. These extensions will also require non-trivial testing
effort. We also plan to test the model in Section V-C for
arbitrary memory-safe pointer sharing.

Acknowledgements: We thank the reviewers for their com-
ments, CHR Chhak and Allison Naaktgeboren for feedback
during the writing process, and Aı̈na Linn Georges for her
enthusiastic reception of our early work.[APT: would consider
rephrasing that last.]

This work was supported by the National Science Foun-
dation under Grant No. 2048499, Specifying and Verifying
Secure Compilation of C Code to Tagged Hardware; and by
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) as part of the Excellence Strategy of the Ger-
man Federal and State Governments, EXC 2092 CASA –
390781972.[APT: Benjamin?]Leo?

REFERENCES

[1] N. Roessler and A. DeHon, “Protecting the stack with metadata
policies and tagged hardware,” in 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. IEEE Computer Society, 2018, pp. 478–495.
[Online]. Available: https://doi.org/10.1109/SP.2018.00066

[2] A. One, “Smashing the stack for fun and profit,” Phrack, vol. 7,
no. 49, November 1996. [Online]. Available: http://www.phrack.com/
issues.html?issue=49&id=14

[3] MITRE Corporation, “Common weakness enumeration:2022 top 25
most dangerous software weaknesses,” https://cwe.mitre.org/top25/
archive/2022/2022 cwe top25.html, 2022.

[4] V. van der Veen, N. dutt-Sharma, L. Cavallaro, and H. Bos, “Memory
errors: The past, the present, and the future,” in Research in Attacks,
Intrusions, and Defenses - 15th International Symposium, RAID 2012,
Amsterdam, The Netherlands, September 12-14, 2012. Proceedings,
ser. Lecture Notes in Computer Science, D. Balzarotti, S. J. Stolfo,
and M. Cova, Eds., vol. 7462. Springer, 2012, pp. 86–106. [Online].
Available: https://doi.org/10.1007/978-3-642-33338-5 5

[5] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013. IEEE Computer Society, 2013,
pp. 48–62. [Online]. Available: https://doi.org/10.1109/SP.2013.13

[6] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks,” in IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016. IEEE Computer Society, 2016,
pp. 969–986. [Online]. Available: https://doi.org/10.1109/SP.2016.62

[7] M. Miller, “Trends, challenges, and strategic shifts in the software vul-
nerability mitigation landscape,” https://github.com/Microsoft/MSRC-
Security-Research/blob/master/presentations/2019 02 BlueHatIL/,
2019.

[8] Chromium Projects, “Chromium security:memory safety,” https://www.
chromium.org/Home/chromium-security/memory-safety/.

[9] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th Conference on USENIX Security Symposium - Volume 7, ser.
SSYM’98. USA: USENIX Association, 1998, p. 5.

[10] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic,
“SoftBound: highly compatible and complete spatial memory safety for
C,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM, 2009, pp. 245–
258. [Online]. Available: http://repository.upenn.edu/cgi/viewcontent.
cgi?article=1941&context=cis reports

https://doi.org/10.1109/SP.2018.00066
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2016.62
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports

[11] ——, “CETS: compiler enforced temporal safety for C,” in 9th
International Symposium on Memory Management. ACM, 2010, pp.
31–40. [Online]. Available: http://acg.cis.upenn.edu/papers/ismm10
cets.pdf

[12] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic,
“HardBound: Architectural support for spatial safety of the
C programming language,” in 13th International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2008, pp. 103–114. [Online]. Available:
http://acg.cis.upenn.edu/papers/asplos08 hardbound.pdf

[13] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’14. USA:
USENIX Association, 2014, p. 147–163.

[14] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost
of shadow stacks and stack canaries,” in Proceedings of the 10th
ACM Symposium on Information, Computer and Communications
Security, ser. ASIA CCS ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 555–566. [Online]. Available:
https://doi.org/10.1145/2714576.2714635

[15] V. Shanbhogue, D. Gupta, and R. Sahita, “Security analysis of processor
instruction set architecture for enforcing control-flow integrity,” in
Proceedings of the 8th International Workshop on Hardware and
Architectural Support for Security and Privacy, ser. HASP ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3337167.3337175

[16] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
cheri capability model: Revisiting risc in an age of risk,” in Proceeding
of the 41st Annual International Symposium on Computer Architecuture,
ser. ISCA ’14. IEEE Press, 2014, p. 457–468.

[17] D. Chisnall, C. Rothwell, R. N. Watson, J. Woodruff, M. Vadera,
S. W. Moore, M. Roe, B. Davis, and P. G. Neumann, “Beyond
the pdp-11: Architectural support for a memory-safe c abstract
machine,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 117–130. [Online]. Available:
https://doi.org/10.1145/2694344.2694367

[18] L. Skorstengaard, D. Devriese, and L. Birkedal, “Reasoning about a
machine with local capabilities: Provably safe stack and return pointer
management,” ACM Trans. Program. Lang. Syst., vol. 42, no. 1, Dec.
2019. [Online]. Available: https://doi.org/10.1145/3363519

[19] ——, “Stktokens: Enforcing well-bracketed control flow and stack en-
capsulation using linear capabilities,” J. Funct. Program., vol. 31, p. e9,
2021. [Online]. Available: https://doi.org/10.1017/S095679682100006X

[20] A. L. Georges, A. Trieu, and L. Birkedal, “Le temps des cerises:
Efficient temporal stack safety on capability machines using directed
capabilities,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA1, apr
2022. [Online]. Available: https://doi.org/10.1145/3527318

[21] R. Gollapudi, G. Yuksek, D. Demicco, M. Cole, G. N. Kothari,
R. H. Kulkarni, X. Zhang, K. Ghose, A. Prakash, and Z. Umrigar,
“Control flow and pointer integrity enforcement in a secure tagged
architecture,” in 2023 2023 IEEE Symposium on Security and
Privacy (SP) (SP). Los Alamitos, CA, USA: IEEE Computer
Society, may 2023, pp. 1780–1795. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/SP46215.2023.00102

[22] A. Azevedo de Amorim, M. Dénès, N. Giannarakis, C. Hriţcu, B. C.
Pierce, A. Spector-Zabusky, and A. Tolmach, “Micro-policies: Formally
verified, tag-based security monitors,” in 36th IEEE Symposium on
Security and Privacy (Oakland S&P). IEEE, May 2015.

[23] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on selected areas in communications, vol. 21, no. 1,
pp. 5–19, 2003.

[24] A. Azevedo de Amorim, C. Hritcu, and B. C. Pierce, “The
meaning of memory safety,” in Principles of Security and Trust
- 7th International Conference, POST 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
ser. Lecture Notes in Computer Science, L. Bauer and R. Küsters,
Eds., vol. 10804. Springer, 2018, pp. 79–105. [Online]. Available:
https://doi.org/10.1007/978-3-319-89722-6 4

[25] M. Dénès, C. Hritcu, L. Lampropoulos, Z. Paraskevopoulou, and
B. C. Pierce, “QuickChick: Property-based testing for Coq (abstract),”
in VSL, 2014. [Online]. Available: http://www.easychair.org/smart-
program/VSL2014/index.html

[26] L. Lampropoulos and B. C. Pierce, QuickChick: Property-Based Testing
in Coq, ser. Software Foundations series, volume 4. Electronic textbook,
Aug. 2018, version 1.0. http://www.cis.upenn.edu/ bcpierce/sf.

[27] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F.
Knight, B. C. Pierce, and A. DeHon, “PUMP – A Programmable
Unit for Metadata Processing,” in Proceedings of the 3rd International
Workshop on Hardware and Architectural Support for Security and
Privacy, ser. HASP ’14. New York, NY, USA: ACM, 2014. [Online].
Available: http://www.crash-safe.org/node/32

[28] R.-V. Consortium, “Risc-v calling conventions,” https://github.com/
riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc.

[29] K. Memarian, V. Gomes, B. Davis, S. Kell, A. Richardson, R. Watson,
and P. Sewell, “Exploring c semantics and pointer provenance,” Pro-
ceedings of the ACM on Programming Languages, vol. 3, pp. 1–32, 01
2019.

[30] T. Bourgeat, I. Clester, A. Erbsen, S. Gruetter, A. Wright, and
A. Chlipala, “A multipurpose formal risc-v specification,” ArXiv, vol.
abs/2104.00762, 2021.

[31] C. Hriţcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis,
A. Azevedo de Amorim, and L. Lampropoulos, “Testing noninterference,
quickly,” in 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP), Sep. 2013, full version in Journal
of Functional Programming, special issue for ICFP 2013, 26:e4 (62
pages), April 2016. Technical Report available as arXiv:1409.0393.
[Online]. Available: http://www.crash-safe.org/node/24

[32] C. Hriţcu, L. Lampropoulos, A. Spector-Zabusky, A. Azevedo de
Amorim, M. Dénès, J. Hughes, B. C. Pierce, and D. Vytiniotis,
“Testing noninterference, quickly,” J. Funct. Program., vol. 26, p. e4,
2016. [Online]. Available: https://doi.org/10.1017/S0956796816000058

[33] Y. Jia and M. Harman, “An analysis and survey of the development
of mutation testing,” IEEE Transactions on Software Engineering,
vol. 37, no. 5, pp. 649–678, 2011. [Online]. Available: http:
//crest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/JiaH10.pdf

[34] A. L. Georges, Personal communication.
[35] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,

J. Anderson, D. Chisnall, N. H. Dave, B. Davis, K. Gudka,
B. Laurie, S. J. Murdoch, R. M. Norton, M. Roe, S. D. Son,
and M. Vadera, “CHERI: A hybrid capability-system architecture for
scalable software compartmentalization,” in 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. IEEE Computer Society, 2015, pp. 20–37. [Online]. Available:
https://doi.org/10.1109/SP.2015.9

[36] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, M. W. Hall and
D. A. Padua, Eds. ACM, 2011, pp. 283–294. [Online]. Available:
https://doi.org/10.1145/1993498.1993532

http://acg.cis.upenn.edu/papers/ismm10_cets.pdf
http://acg.cis.upenn.edu/papers/ismm10_cets.pdf
http://acg.cis.upenn.edu/papers/asplos08_hardbound.pdf
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/2694344.2694367
https://doi.org/10.1145/3363519
https://doi.org/10.1017/S095679682100006X
https://doi.org/10.1145/3527318
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00102
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00102
https://doi.org/10.1007/978-3-319-89722-6_4
http://www.easychair.org/smart-program/VSL2014/index.html
http://www.easychair.org/smart-program/VSL2014/index.html
http://www.crash-safe.org/node/32
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc
http://www.crash-safe.org/node/24
https://doi.org/10.1017/S0956796816000058
http://crest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/JiaH10.pdf
http://crest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/JiaH10.pdf
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1145/1993498.1993532

	Introduction
	Framework and Assumptions
	Properties by Example
	Formalization
	Machine
	Security semantics
	Events and Traces
	Variants, corrupted sets, and ``on-return'' assertions
	Properties

	Extended Code Features
	Sharing Stack Memory
	Tail Calls
	Provenance, Capabilities, and Protecting Objects

	Enforcement
	Validation through Random Testing
	Test Generation
	Property-based Testing
	Mutation Testing
	Results

	Related Work
	Future Work
	References

