
A Tale of Two Provers
Verifying Monoidal String Matching in Liquid Haskell and Coq

Niki Vazou
University of Maryland

Leonidas Lampropoulos
University of Pennsylvania

Je� Polakow
Awake Networks

Abstract
We demonstrate for the �rst time that Liquid Haskell, a re�nement
type checker for Haskell programs, can be used for arbitrary the-
orem proving by verifying a parallel, monoidal string matching
algorithm implemented in Haskell. We use re�nement types to
specify correctness properties, Haskell terms to express proofs of
these properties, and Liquid Haskell to check the proofs. We evalu-
ate Liquid Haskell as a theorem prover by replicating our 1428 LoC
proof in a dependently-typed language (Coq - 1136 LoC). Finally,
we compare both proofs, uncovering the relative advantages and
disadvantages of the two provers.

CCS Concepts •So�ware and its engineering → Formal so�-
ware veri�cation;

Keywords Liquid Haskell, Coq, Dependent and Re�nement Types,
Formal Veri�cation, Parallelization, �eorem Proving, Monoid Laws

ACM Reference format:
Niki Vazou, Leonidas Lampropoulos, and Je� Polakow. 2017. A Tale of
Two Provers. In Proceedings of ACM SIGPLAN Conference on Programming
Languages, USA, May 2017 (Haskell ’17), 12 pages.
DOI: 10.1145/3122955.3122963

1 Introduction
Liquid Haskell [25] is a veri�er for Haskell programs that semi-
automatically checks whether the code satis�es logical speci�ca-
tions – expressed as re�nement types – using an SMT [1] solver.
Traditionally [11], re�nement types are syntactically restricted
over decidable theories (e.g., linear arithmetic and uninterpreted
functions) permi�ing fully SMT-automated type checking. Liq-
uid Haskell extends traditional re�nement type speci�cations with
(undecidable) properties over arbitrary, terminating Haskell func-
tions [26]. While proofs over decidable properties are completely
automated via the SMT solver, the user has to manually prove the
non-decidable proof obligations. �ese manual proofs are wri�en
as plain Haskell programs; thus, Haskell becomes a theorem prover.

In this paper we present the �rst non-trivial, 1428 LoC, applica-
tion of Liquid Haskell as a theorem prover: we prove the correctness
of both a monoid for string matching and a monoid morphism from
strings to our string matching monoid. �is monoid morphism is a
string matching function which can be run in parallel over adjacent
chunks of an input string, the results of which can be combined,
also in parallel, into the �nal match results. We replicate these
correctness proofs in Coq (1136 LoC) and empirically compare the
two approaches. Both proofs are available online [29].

�e contributions of this paper are outlined as follows.
• We explain how theorems and proofs are encoded and checked

in Liquid Haskell by formalizing monoids and proving that lists

Haskell ’17, USA
2017. 978-1-4503-5182-9/17/09. . . $15.00
DOI: 10.1145/3122955.3122963

form a monoid (§ 2). We also use this section to introduce nota-
tions and background necessary in the rest of the paper.

• We create the �rst large application of Liquid Haskell as a theo-
rem prover: a veri�ed parallelizable string matcher. We do this
by �rst formalizing monoid morphisms and showing that such
morphisms on “chunkable” input can be correctly parallelized
(§ 3) by following the three steps of the MapReduce algorithm:
1. divide the input in chunks,
2. apply the morphism in parallel to all chunks, and
3. recombine in parallel the mapped chunks.

Our proof assumes the correctness of Haskell’s parallel li-
brary. We then apply these three steps (§ 5) to a sequential string
matcher to obtain a correct, parallel (and thus faster) version.

• We evaluate the applicability of Liquid Haskell as a theorem
prover by repeating the same proof in the Coq proof assistant.
We identify interesting tradeo�s in the veri�cation approaches
encouraged by the two tools in two parts: we �rst draw pre-
liminary conclusions based on the general parallelization steps
(§ 4) and then we delve deeper into the comparison, highlighting
di�erences based on the string matching case study (§ 6). Finally
(§ 7), we complete the evaluation picture by providing additional
quantitative comparisons of the two provers.

2 Liquid Haskell as a �eorem Prover
In this section we demonstrate how Haskell can be used as a theo-
rem prover by proving that lists form a monoid. Concretely, we
• specify monoid laws as re�nement types,
• prove the laws using plain Haskell functions, and
• verify the proofs using Liquid Haskell.
We start (§ 2.1) by de�ning a Haskell List datatype with the asso-
ciated monoid elements ϵ and ♦ corresponding to the empty list
and concatenation. We then prove the three monoid laws (§ 2.2,
§ 2.4, and § 2.5) in Liquid Haskell. Finally (§ 2.6), we conclude that
lists are indeed monoids.

2.1 Re�ection of Lists into Logic
To begin with, we de�ne a standard recursive List datatype.

data L [length] a
= N | C {head :: a, tail :: L a}

�e length annotation in the de�nition teaches Liquid Haskell to
use length to check the termination of functions recursive on lists.
�e length function is de�ned as a standard Haskell function.

length :: L a → {v:Integer | 0 ≤ v}
length N = 0
length (C x xs) = 1 + length xs

�e re�nement type speci�es that length returns a natural number,
that is, length returns a Haskell Integer value v that is moreover
re�ned to satisfy the constraint 0 ≤ v. To check the validity of this
speci�cation, Liquid Haskell encodes Haskell’s Integer as a logical

Haskell ’17, May 2017, USA Niki Vazou, Leonidas Lampropoulos, and Je� Polakow

integer1 and via standard re�nement type constraint generation [9,
28], generates two proof obligations. For the N case it checks that
the body v = 0 is a natural number.

v = 0⇒ 0 ≤ v (1)
For the C case Liquid Haskell binds the recursive call to a fresh
variablevr = length xs and checks that assuming the speci�cation
forvr , i.e., assuming thatvr is a natural number, the bodyv = 1+vr
is also non negative.

0 ≤ vr ⇒ v = 1 +vr ⇒ 0 ≤ v (2)
Liquid Haskell decides the validity of both these proof obligations
automatically using an SMT solver.

We de�ne the two monoid operators on Lists: an identity element
ϵ (the empty list) and an associative operator (♦) (list append).

ϵ :: L a (♦) :: L a → L a → L a
ϵ = N N ♦ ys = ys

(C x xs) ♦ ys = C x (xs ♦ ys)

Our goal is to specify and prove the monoid laws on the above
operators using Liquid Haskell. However, to preserve the decid-
ability of SMT-automated type checking, Liquid Haskell does not
automatically li� arbitrary Haskell functions in the re�nement logic.
Instead, it enforces a clear separation between Haskell functions
and their interpretation into the SMT logic, allowing only the re-
�nement speci�cation of the function, i.e., a decidable abstraction
of the Haskell function, to �ow into the SMT logic. For example,
the validity check of both the linear arithmetic statements (1) and
(2) is automatically decided by the SMT, since the recursive call
length xs is, by default, interpreted in the logic as a value vr that
only satis�es the length speci�cation of being a natural number.

Liquid Haskell li�s Haskell functions into the logic using the
measure and reflect annotations, that preserve SMT decidability.
• �e measure f annotation [28] li�s into the logic the Haskell

function f, if f is syntactically de�ned on precisely one Algebraic
Data Type (ADT). Due to this syntactic restriction the measure
f is automatically unfolded into the SMT logic (i.e., imitating
automatic type level computations).

• �e reflect f annotation [26] li�s the arbitrary, terminating
Haskell function f into the logic but, for decidable type check-
ing, f is not automatically unfolded in the logic. Instead, as we
shall describe, type level unfolding of the re�ected function f is
manually performed via respective value level computations.
Since length is de�ned on exactly one ADT (i.e., the List) it is

li�ed in the re�nement logic as a measure

measure length

With the above measure annotation, Liquid Haskell interprets
length into the logic by automatically strengthening the types
of the List data constructors. For example, the type of C is auto-
matically strengthened to

C :: x:a → xs:L a
→ {v:L a | length v = length xs + 1 }

where length is an uninterpreted function in the logic.
We li� the monoid operators ϵ and (♦) in the logic via re�ection.

1It is possible to encode bounded Int in Liquid Haskell (an example of such an encoding
can be found in Arithmetic Over�ows) but this encoding would require extra in-bound
checking proof obligations for all Int operators leading to imprecise veri�cation.

reflect ϵ, (♦)

�e reflect annotations li� (♦) and (ϵ) into the logic by auto-
matically strengthening the types of the functions’ speci�cations.

(ϵ) :: {v:L a | v = ϵ ∧ v = N}

(♦) :: xs:L a → ys:L a
→ {v:L a | v = xs ♦ ys
∧ v = if isN xs then ys

else C (head xs) (tail xs ♦ ys)}}

Here, the (♦) and (ϵ) appearing in the re�nements are uninter-
preted functions and isN, head, and tail are automatically gen-
erated measures. To preserve predictable type checking, Liquid
Haskell will not a�empt to unfold the re�ected functions into the
logic [14]. But a�er re�ection, at each Haskell function call the
function de�nition is unfolded exactly once into the logic, allowing
Liquid Haskell to prove properties about Haskell functions.

2.2 Le� Identity
In Liquid Haskell, we express theorems as re�ned type speci�ca-
tions and proofs as their Haskell inhabitants. We construct proofs
using the combinators from the built-in library ProofCombinators 2

that are summarized in Figure 1. A Proof is a unit type that when
re�ned is used to specify theorems. A trivial proof is the unit
value. For example, trivial :: {v:Proof | 1 + 2 = 3} triv-
ially proves the theorem 1 + 2 = 3 using the SMT solver. �e
expression p *** QED casts any expression p into a Proof. �e
equality assertion x ==. y states that x and y are equal and re-
turns the �rst argument for use in the rest of the proof. We extend
the equality assertion to receive an optional third proof argument.
For instance, x ==. y lemma proves x = y using the proof term
lemma. To avoid parenthesizing the optional proof argument in the
common case where lemma is an application and not a variable, we
follow the same approach as Haskell’s dollar ($) and de�ne the ∴
operator with appropriate precedence (thus, we can write x ==.
y ∴ lemma). Finally, x∧.y combines two proofs x and y into one
by inserting the argument proofs into the logical environment.

Armed with these combinators, le� identity is expressed as a re-
�nement type signature that takes as input a list x:L a and returns
a Proof (i.e., unit) type re�ned with the property ϵ ♦ x = x.

idLeft_List :: x:L a → { ϵ ♦ x = x }
idLeft_List x = ϵ ♦ x ==. N ♦ x ==. x *** QED

We write {ϵ ♦ x = x} as a simpli�cation for {v:Proof | ϵ ♦ x
= x} since the binder v is irrelevant. We begin from the le� hand
side ϵ ♦ x, which is equal to N ♦ x by calling ϵ thus unfolding
the equality empty = N into the logic. Next, the call N ♦ x unfolds
the de�nition of (♦) on N and x, which is equal to x, concluding
our proof. Finally, we use the operator p *** QED which casts p
into a proof term. In short, the proof of le� identity, proceeds by
unfolding the de�nitions of ϵ and (♦) on the empty list.

2�e ProofCombinators library comes with Liquid Haskell and is de�ned
in h�ps://github.com/ucsd-progsys/liquidhaskell/blob/develop/include/Language/
Haskell/Liquid/ProofCombinators.hs.

https://ucsd-progsys.github.io/liquidhaskell-blog/2017/03/20/arithmetic-overflows.lhs/
https://github.com/ucsd-progsys/liquidhaskell/blob/develop/include/Language/Haskell/Liquid/ProofCombinators.hs
https://github.com/ucsd-progsys/liquidhaskell/blob/develop/include/Language/Haskell/Liquid/ProofCombinators.hs

A Tale of Two Provers Haskell ’17, May 2017, USA

type Proof = () trivial :: Proof (==.) :: x:a -> y:{a|x = y} -> {v:a|v = x}
data QED = QED trivial = () x ==. = x

(***) :: a -> QED -> Proof (∴) :: (Proof -> a) -> Proof -> a (∧.) :: Proof -> Proof -> Proof
*** = () thm ∴ lemma = thm lemma ∧. = ()

Figure 1. Operators and Types de�ned in ProofCombinators Library.

2.3 PLE: Proof by Logical Evaluation

To automate trivial proofs, Liquid Haskell uses PLE (Proof by
Logical Evaluation) a terminating but incomplete heuristic, inspired
by [14], that automatically unfolds re�ected functions in proof
terms. PLE evaluates (i.e., unfolds) a re�ected function call if it
can be statically decided what branch the evaluation takes, e.g.,
N ♦ ys is unfolded to ys while xs ♦ ys is not unfolded when
the structure of xs cannot be statically decided. Unlike SMT’s
axiom instantiation heuristics (e.g., E-matching [6, 18]) that make
veri�cation unstable [14], PLE is always terminating and is enabled
on a per-function basis. For instance, the annotation

automatic-instances idLeft_List

activates PLE in the idLeft_List function. When PLE is used to
complete a proof, it could be unpredictable whether proof synthesis
succeeds, yet the veri�cation of the rest of the program is not
a�ected. �us, global veri�cation stability is preserved.

PLE is used to simplify the le� identity proof by automatically
unfolding ϵ to N and then N ♦ x to x. (We use the cornered one
line frame to denote Liquid Haskell proofs that use PLE via the
automatic-instances annotation.)

idLeft_List :: x:L a → { ϵ ♦ x = x }
idLeft_List _ = trivial

�at is the proof proceeds, trivially, by logical evaluation of ϵ ♦ x.

2.4 Right Identity
Right identity is proved by structural induction. We encode induc-

tive proofs by case spli�ing on the base and inductive case, and by
enforcing the inductive hypothesis via a recursive call.

idRight_List :: x:L a → { x ♦ ϵ = x }
idRight_List N = N ♦ ϵ ==. N *** QED
idRight_List (C x xs)

= (C x xs) ♦ ϵ
==. C x (xs ♦ ϵ)
==. C x xs ∴ idRight_List xs
*** QED

�e recursive call idRight_List xs is provided as a third optional
argument in the (==.) operator to justify the equality xs ♦ ϵ =
xs, while the operator (∴) is merely a function application with
the appropriate precedence. Since Haskell is pure, to ensure well
formedness of proof terms one merely needs to check that such
terms are not partial. Liquid Haskell veri�es that all the proof terms
are well formed via termination and totality checking since (1) the
inductive hypothesis is only applying to smaller terms and (2) all
cases are covered.

We use the PLE heuristic to automatically generate all function
unfoldings and simplify the right identity proof.

idRight_List :: x:L a → { x ♦ ϵ = x }
idRight_List N = trivial
idRight_List (C _ xs) = idRight_List xs

PLE performs symbolic unfolding but not case spli�ing, that is the
cases should be explicitly split by the user. For instance, in the C
branch the term C x xs ♦ ϵ automatically unfolds to C x (xs ♦
ϵ). �en the SMT will use the inductive hypothesis and congruence
to conclude the proof.

2.5 Associativity
Similarly, we prove associativity using structural induction.

assoc_List :: x:L a → y:L a → z:L a
→ {x ♦ (y ♦ z) = (x ♦ y) ♦ z}

assoc_List N _ _ = trivial
assoc_List (C _ x) y z = assoc_List x y z

As with the le� identity, the proof proceeds by (1) function unfold-
ing (or rewriting in paper and pencil proof terms), (2) case spli�ing
(or case analysis), and (3) recursion (or induction).

2.6 Lists are a Monoid
Finally, we formally de�ne monoids as structures that satisfy the

monoid laws of associativity and identity and conclude that L a is
indeed a monoid.

De�nition 2.1 (Monoid). �e triple (m, ϵ , ♦) is a monoid (with
identity element ϵ and associative operator ♦), if the following
functions are de�ned.

idLeftm :: x:m → {ϵ ♦ x = x}
idRightm :: x:m → {x ♦ ϵ = x}
assocm :: x:m → y:m → z:m

→ {x ♦ (y ♦ z) = (x ♦ y) ♦ z}

Note that for each monoid law we use the subscript m to denote
a di�erent proof term for di�erent monoids. Ideally, we would like
to de�ne proof terms as extra methods in the monoid class, but
since Liquid Haskell does not yet support theorem proving on class
methods in our implementation we need to rede�ne each monoid
method as a Haskell function for each monoid.

Corollary 2.2. (L a, ϵ , ♦) is a monoid.

3 Veri�ed Parallelization of Morphisms
A monoid morphism is a function between two monoids which
preserves the monoidal structure. We call a monoid morphism
chunkable if its domain can be split into pieces. To parallelize a
chunkable morphism f we:

§ 3.1 divide the input in chunks of size i (chunk i),
§ 3.2 apply f in parallel to all chunks (pmap f), and
§ 3.3 combine the chunks, in parallel j at a time (pmconcat j).

Haskell ’17, May 2017, USA Niki Vazou, Leonidas Lampropoulos, and Je� Polakow

In this section we implement and verify in Liquid Haskell the cor-
rectness of the transformation

f = pmconcat j . pmap f . chunk i

We rely on the correctness of Haskell’s parallelization primitive
(withStrategy) that is assumed to be correct.

3.1 Lists are Chunkable Monoids
De�nition 3.1 (Chunkable Monoids). We de�ne a monoid (m, ϵ ,
♦) to be chunkable if for every natural number i and monoid x, the
functions takem i x and dropm i x are de�ned in such a way
that takem i x ♦ dropm i x exactly reconstructs x.

lengthm :: m → Nat
dropm :: i:Nat → x:{m | i ≤ lengthm x}

→ {v:m | lengthm v = lengthm x - i}
takem :: i:Nat → x:{m | i ≤ lengthm x}

→ {v:m | lengthm v = i}
take_drop_specm :: i:Nat → x:m

→ {x = takem i x ♦ dropm i x}

�e functional methods of chunkable monoids are take and
drop, while the length method is required to give the pre- and post-
condition on the other operations. �e proof term take_drop_spec
speci�es the reconstruction property.

Next, we use the takem and dropm methods for each chunkable
monoid (m, ϵ , ♦) to de�ne a chunkm i x function that splits x in
chunks of size i.

type Pos = {v:Integer | 0 < v}

chunkm :: i:Pos → x:m
→ {v:L m | chunk_specm i x v}
/ [lengthm x]

chunkm i x
| lengthm x ≤ i
= C x N
| otherwise
= takem i x 8C8 chunkm i (dropm i x)

To prove termination of chunkm Liquid Haskell checks that the user-
de�ned termination metric (wri�en / [lengthm x]) decreases at
the recursive call. �e check succeeds as dropm i x is speci�ed
to return a monoid smaller than x. We specify the length of the
chunked result using the speci�cation function chunk_specm .

chunk_specm i x v
| lengthm x ≤ i = length v == 1
| i == 1 = length v == lengthm x
| otherwise = length v < lengthm x

�e speci�cations of both takem and dropm are used to automati-
cally verify the lengthm constraints imposed by chunk_specm .

Finally, we prove that Lists from § 2 are chunkable monoids.

take_List i N = N
take_List i (C x xs)
| i == 0 = N
| otherwise = C x (take_List (i-1) xs)

drop_List i N = N
drop_List i (C x xs)

| i == 0 = C x xs
| otherwise = drop_List (i-1) xs

�e above de�nitions follow the library built-in de�nitions on lists,
but they need to be rede�ned for the re�ected, user de�ned list data
type. On the plus side, Liquid Haskell will automatically prove that
the above de�nitions satisfy the speci�cations of the chunkable
monoid, using the length de�ned in the previous section. Finally,
the take-drop reconstruction speci�cation is proved by induction on
the size i and using the PLE tactic for the trivial logical evaluation.

take_drop_spec_List i N
= trivial

take_drop_spec_List i (C x xs) | i == 0
= trivial

take_drop_spec_List i (C x xs)
= take_drop_spec_List (i-1) xs

3.2 Parallel Map
We de�ne a parallelized map function pmap using Haskell’s li-

brary parallel. Concretely, we use the parallelization function
withStrategy, from Control.Parallel.Strategies, that com-
putes its argument in parallel given a parallel strategy.

pmap :: (a → b) → L a → L b
pmap f xs = withStrategy parStrategy (map f xs)

Parallelism in the Logic. �e function withStrategy, that per-
forms the runtime parallelization, is an imported Haskell library
function, whose implementation is not available during veri�cation.
To use it in our veri�ed code, we make the assumption that it always
returns its second argument.

assume withStrategy :: Strategy a
→ x:a → {v:a | v = x}

Moreover, to re�ect the implementation of pmap in the logic, the
function withStrategy should also be represented in the logic. Liq-
uidHaskell encodes withStrategy in the logic as a logical, i.e., total,
function that merely returns its second argument, withStrategy
_ x = x. �at is, our proof does not reason about runtime paral-
lelism; we prove the correctness of the parallelization transforma-
tion, assuming the correctness of the parallelization primitive.

Under this encoding, the parallel strategy chosen does not a�ect
veri�cation. In our codebase we de�ned parStrategy to be the
traversable strategy.

parStrategy :: Strategy (L a)
parStrategy = parTraversable rseq

3.3 Parallel Monoidal Concatenation
�e function chunkm lets us turn a monoidal value into several
pieces. Dually, for any monoid (m, ϵ , ♦), the monoid concatenation
mconcatm turns a L m back into a single m.

mconcatm :: L m → m
mconcatm N = ϵ
mconcatm (C x xs) = x ♦ mconcatm xs

A Tale of Two Provers Haskell ’17, May 2017, USA

Next, we parallelize the monoid concatenation by de�ning the
function pmconcatm that chunks the input list of monoids and
concatenates each chunk in parallel.

pmconcatm :: Integer → L m → m
pmconcatm i x | i ≤ 1 || length x ≤ i
= mconcatm x
pmconcatm i x
= pmconcatm i (pmap mconcatm (chunk i x))

Where chunk is the list chunkable operation chunk_List. �e func-
tion pmconcatm i x calls mconcatm x in the base case, otherwise
it (1) chunks the list x in lists of size i, (2) runs in parallel mconcatm
to each chunk, and (3) recursively runs itself with the resulting list.
Termination of pmconcatm holds, as the length of chunk i x is
smaller than the length of x, when 1 < i.

Finally, we prove the correctness of the parallelization of monoid
concatenation.

�eorem 3.2. For each monoid (m, ϵ , ♦) the parallel and sequential
concatenations are equivalent:

pmconcatEq :: i:Integer → x:L m
→ { pmconcatm i x = mconcatm x }

Proof. �e proof proceeds by structural induction on the input list
x and the details can be found in [29].

First, we prove that mconcat distributes over list cu�ing.

mcut :: i:Nat → x:LLEq m i
→ {mconcatm x = mconcatm (take i x)

♦ mconcatm (drop i x)}

type LLEq m I = {xs: L m | I ≤ length xs}

We generalize the above lemma to prove that mconcat distributes
over list chunking.

mchunk :: i:Integer → x:L m
→ {mconcatm x =

mconcatm (map mconcatm (chunk i x))}

Both lemmata are proved by structural induction on the input list x.
Lemma mchunk proves pmconcatEq by structural induction, using
le� identity in the base case. �

3.4 Parallel Monoid Morphism
We conclude this section by specifying and verifying the correctness
of generalized monoid morphism parallelization.

�eorem 3.3 (Correctness of Parallelization). Let (m, ϵ , ♦) be a
monoid and (n, η, �) be a chunkable monoid. �en, for every mor-
phism f :: n → m, every positive number i and j, and input x,
f x = pmconcat i (pmap f (chunkn j x)) holds.

parallelismEq
:: f:(n → m) → Morphism n m f
→ x:n → i:Pos → j:Pos →
{f x = pmconcatm i (pmap f (chunkn j x))}

where the Morphism n m f argument is a proof argument that vali-
dates that f is indeed a morphism via the re�nement type alias

type Morphism n m F = x:n → y:n
→ {F η = ϵ ∧ F (x � y) = F x ♦ F y}

Proof. We prove the equivalence in two steps. First we prove a
lemma (parallelismLemma) that the equivalence holds when the
mapped result is concatenated sequentially. �en, we prove paral-
lelism equivalence by de�ning a valid inhabitant for parallelismEq.
Lemma 3.4. Let (m, ϵ , ♦) be a monoid and (n, η, �) be a chunk-
able monoid. �en, for every morphism f : n → m, every posi-
tive number i and input x, f x = mconcatm (pmap f (chunkn
i x)) holds.

parallelismLemma :: f:(n → m) → Morphism n m f
→ x:n → i:Pos
→ {f x = mconcatm (pmap f (chunkn i x))}

Proof. �e proof proceeds by induction on the length of the input.

parallelismLemma f thm x i | lengthn x ≤ i
= idRightm (f is)

parallelismLemma f thm x i
= parallelismLemma f thm dropX i
∧. thm takeX dropX ∧. takeDropPropn i x
where

dropX = dropn i x
takeX = taken i x

In the base case we use rewriting and right identity on the monoid
f x. In the inductive case, we use the inductive hypothesis with
dropX = dropn i x, that is provably smaller than x as 1 < i. We
get basic distribution for f: f takeX ♦ f dropX = f (takeX �
dropX), since f is a monoid morphism as encoded in the argument
thm takeX dropX. Finally, by the takeDropPropn property of the
chunkable monoid n we merge takeX � dropX to x. �

Finally, the parallelismEq function is de�ned using the above
lemma combined with the equivalence of parallel and sequential
mconcat as encoded by pmconcatEq in �eorem 3.2.

parallelismEq f thm x i j
= pmconcatEq i (pmap f (chunkn j x))
∧. parallelismLemma f thm x j

�

4 Monoid Morphism Parallelization in Coq
To put Liquid Haskell as a theorem prover into perspective, we
replicated the proof of the Parallel Monoid Morphism (�eorem 3.3)
in the Coq proof assistant. In this section we present the main
di�erences that appeared during this e�ort.

4.1 Intrinsic vs. Extrinsic Veri�cation
�e translation of the chunkable monoid speci�cation of § 3.1 in
Coq is a characteristic instance of how Liquid Haskell and Coq
naturally favor intrinsic and extrinsic veri�cation respectively. �e
(intrinsic) Liquid Haskell pre- and post-conditions of the take and
drop functions are not embedded in the Coq types, but are indepen-
dently, i.e., extrinsically, encoded as speci�cation terms in the extra
drop_spec and take_spec methods. (We use the double-lined code
to frame Coq code.)

Haskell ’17, May 2017, USA Niki Vazou, Leonidas Lampropoulos, and Je� Polakow

lengthm : M → nat;
dropm : nat → M → M;
takem : nat → M → M;

drop_specm : ∀ i x, i ≤ lengthm x →
lengthm (dropm i x) = lengthm x - i;

take_specm : ∀ i x, i ≤ lengthm x →
lengthm (takem i x) = i;

take_drop_specm: ∀ i x,
x = takem i x ♦ dropm i x;

Liquid Haskell favors intrinsic veri�cation, as the shallow speci-
�cations of take and drop are embedded into the functions and
automatically proved by the SMT solver. On the contrary, Coq
users can (and usually) take the extrinsic veri�cation approach,
where the speci�cations of take and drop are encoded as indepen-
dent speci�cation terms. Since, unlike Liquid Haskell’s implicit
and SMT-automatic proofs, the Coq speci�cation terms should be
explicitly proved by the user, the extrinsic approach signi�cantly
improves readability and ease-of-use of Coq code, as the function
implementations are not li�ered by the speci�cations’ proofs.

4.2 User-De�ned vs. Library Functions
In Coq, we can import library functions and their speci�cations
—here ssreflect’s seq [12]— to de�ne the chunkable monoid oper-
ations that had to be de�ned from scratch in Liquid Haskell (§ 3.1).

Definition length_list := @seq.size A;
Definition drop_list := @seq.drop A;
Definition take_list := @seq.take A;

Coq’s libraries also come with already established theories. For
example, to prove the drop_spec_list we just apply an existing
library lemma (seq.size_drop), unlike Liquid Haskell that cur-
rently provides no such library support.

4.3 SMT- vs. Tactic-Based Automation
Unlike Liquid Haskell that uses the SMT to automatically construct
proofs over decidable theories, such as linear arithmetic, Coq re-
quires explicit proof terms. For example, consider the proof of the
take speci�cation for lists.

Theorem take_spec_list :
∀ i x, i ≤ length_list x →

length_list (drop_list i x) = i.

�e crux of the proof is the library lemma size_take.

Lemma size_take x : size (take i x) =
if i < size x then i else size x.

However, the existing lemma and our desired speci�cation di�er
when i is exactly equal to size x, generating a linear arithmetic
proof obligation. While in Liquid Haskell such obligations are auto-
matically discharged by the SMT, in the Coq implementation [29]
we need to explicitly invoke an adaptation of the advanced Pres-
burger Arithmetic solver omega [21] for ssreflect.

�is trivial example highlights a major di�erence between using
the SMT and tactics (like omega) for proof automation. SMT veri�-
cation is complete over a limited number of theories, such as linear
arithmetic, but, in Liquid Haskell, the user has no way to expand

these theories. On the contrary, in Coq the user has the option of
customizing the automation (e.g., by expanding the hint database
or by writing more domain-speci�c tactics). However, even the
“nuclear option”, omega, is not complete. When it fails (which is not
a rare situation as we found out during our development), the user
has to manually complete the proof. Worse, the proofs generated
by omega are far from ideal; as stated by �e Coq development team
[5] : “�e simpli�cation procedure is very dumb and this results in
many redundant cases to explore. Much too slow.”

4.4 Semantic vs. Syntactic Termination Checking
Since non-terminating programs introduce inconsistencies in the
logic, all re�ected Haskell functions and all Coq programs are prov-
ably terminating. A �rst di�erence between termination check-
ing in the two provers is that Liquid Haskell allows non-re�ected,
Haskell functions (that do not �ow into the logic) to be poten-
tially diverging [28], while Coq, that does not explicitly distinguish
between logic and implementation, does not, by default, support
partial computations. Making such a distinction between logic and
implementation in a dependently typed se�ing is in fact a research
problem of its own [3].

�e second di�erence is that Liquid Haskell uses a semantic ter-
mination checker, unlike Coq that is using a particularly restrictive
syntactic criterion, where only recursive calls on subterms of some
principal argument are allowed. Consider for example the chunk
de�nition of § 3.1. Liquid Haskell semantically checks termination
of chunk using the user-provided termination metric [length x]
that speci�es that the length of x is decreasing at each recursive
call. To persuade Coq’s syntactic termination checker that chunk
terminates, we extended chunk with an additional natural number
fuel argument that trivially decreases at each recursive call.

Fixpoint chunkm {M: Type} (fuel : nat)
(i : nat) (x : M) : option (list M)

We de�ned chunkm to be None when not enough fuel is provided,
otherwise it follows the Haskell recursive implementation. �is
makes our speci�cations existentially quanti�ed:

Theorem chunk_specm : ∀ {M} i (x : M),
i > 0 → exists l,
chunkm (lengthm x).+1 i x = Some l
/\ chunk_resm i x l.

�e above speci�cation enforces both the length speci�cations as
encoded in chunk’s Liquid Haskell type and the successful termi-
nation of the computation given su�cient fuel.

�e fuel technique is a common way to encode non-structural
recursion, heavily used in CompCert [15]. Various such techniques
have been developed by the Coq community to tackle such re-
cursions. In “Certi�ed Programming with Dependent Types” [4],
Chlipala compares three general techniques to bypass Coq’s syn-
tactic termination restriction: well-founded recursion (e.g. using
Function (§ 2.3 of [5])), domain-theory-inspired non-termination
monads (where our fuel-based approach can be roughly catego-
rized), and co-inductive non-termination monads. However, no
single method is found to be ideal.

4.5 Executable vs. Axiomatized Parallelism
Liquid Haskell veri�es Haskell programs that use libraries from
the Haskell ecosystem. For instance, in § 3.2 we used the library

A Tale of Two Provers Haskell ’17, May 2017, USA

parallel for runtime parallelization and we axiomatized paral-
lelism in logic. Coq does not have such a library, so we axiomatized
not only the behavior but also the existence of parallel functions:

Axiom Strategy : Type.
Axiom parStrategy : Strategy.
Axiom withStrategy
: ∀ {A}, Strategy → A → A.

Axiom withStrategy_spec
: ∀ {A} (s : Strategy) (x : A),
withStrategy s x = x.

In principle, one could extract these constants to their correspond-
ing Haskell counterparts, thus recovering the runtime behavior of
the Liquid Haskell implementation.

5 Case Study: Correctness of Parallel String
Matching in Liquid Haskell

In this section we apply the parallelization equivalence theorem
of § 3 to parallelize a realistic, e�cient string matcher. We de-
�ne a string matching function toSM :: RString → SM tg from
Re�ned Strings RString to a monoidal, string matching data struc-
ture SM tg. In § 5.1 we assume that toSM’s domain, i.e., the Re�ned
String that is a wrapper of Haskell’s optimized ByteString, is a
chunkable monoid. �en, in § 5.2 we prove that toSM’s range, i.e.,
SM tg, is a monoid and in § 5.3 we prove that toSM is a morphism.
Finally, in § 5.4, we parallelize toSM by an application of the parallel
morphism function of § 3.4.

5.1 Strings are assumed to be Chunkable Monoids
We de�ne the type RString to be Haskell’s existing, optimized,
constant-indexing ByteString (or BS).

type RString = BS.ByteString

Similarly, we use the existing ByteString functions to de�ne the
chunkable monoids operators.

η = BS.empty
x � y = x 8BS.append8 y

lenStr x = BS.length x
takeStr i x = BS.take i x
dropStr i x = BS.drop i x

We axiomatize the above re�ned string functions to satisfy the
properties of chunkable monoids. For instance, we de�ne a logical
uninterpreted function � and relate it to the Haskell � function
via an assumed (unchecked) type.

assume (�) :: x:RString → y:RString
→ {v:RString | v = x � y}

�en, we use the uninterpreted function � in the logic to assume
monoid laws, for instance, associativity.

assume assocStr :: x:RString → y:RString
→ z:RString → {x � (y � z) = (x � y) � z}

We extend the above axiomatization for the rest of the chunkable
monoid requirements and conclude that RString is a chunkable
monoid following the De�nition 3.1,

Assumption 1 (RString is a Chunkable Monoid). (RString, η, �)
combined with the methods lenStr, takeStr, dropStr and the proof
term takeDropPropStr is a chunkable monoid.

We note that actually proving that ByteString implements a
chunkable monoid in Liquid Haskell is possible, as implied by [27],
but it is both time consuming and orthogonal to our purpose. In-
stead, here we follow the easy route of axiomatization – demon-
strating that Liquid Haskell veri�cation can be gradual.

5.2 String Matching Monoid
String matching determines all the indices in a source string where
a given target string begins. For example, for source string ababab
and target aba the results of string matching would be [0, 2].

We now de�ne a suitable monoid, SM tg, for the codomain of a
string matching function, where tg is the target (type level) string.

An index i is a good index on the string input for the target,
if the target appears in the position i of the input. We encode
good indexing using the re�nement type alias GoodIndex I Tg (in
Liquid Haskell’s type de�nitions arguments starting with upper and
lower case le�ers stand for value and type parameters, respectively).

type GoodIndex I Tg = {i:Nat | isGoodIndex I Tg i }

isGoodIndex input tg i
= subString i (lenStr tg) input == tg
∧ i + lenStr tg ≤ lenStr input

subString o l = takeStr l . dropStr o

We de�ne the data type SM tg to contain a re�ned string �eld
input and a list �eld indices of input’s good indices for tg. (For
simplicity we use Haskell’s built-in lists notation to refer to the
re�ected List type of § 2.)

data SM (tg :: Symbol) where
SM :: input: RString
→ indices:[GoodIndex input (fromString tg)]
→ SM tg

We use the string type literal 3 to parameterize the string matcher
over the target being matched. �is encoding turns the string
matcher into a monoid as the Haskell’s type checker statically
ensures that only matches on the same target are appended together.

Next, we de�ne the monoid identity and mappend methods for
string matching.

�e identity method ϵ of SM target, for each target, returns
the identity string (η) and the identity list ([]).

ϵ :: ∀ (target :: Symbol). SM target
ϵ = SM η []

�e mappend method (♦) of SM tg is explained in Figure 2,
where the two string matchers SM x xis and SM y yis are ap-
pended. �e returned input �eld is just x � y, while the returned
indices �eld appends three list of indices: 1) the indices xis on
x casted to be good indices of the new input x � y, 2) the new
indices xyis created when concatenating the two input strings, and
3) the indices yis on y, shi�ed right lenStr x units. �e Haskell
de�nition of ♦ captures the creation of these three kinds of indices.
3Symbol is a kind and target is a singleton string type from GHC.TypeLits on Hackage.

https://hackage.haskell.org/package/base-4.9.1.0/docs/GHC-TypeLits.html

Haskell ’17, May 2017, USA Niki Vazou, Leonidas Lampropoulos, and Je� Polakow

Figure 2. Mappend indices of String Matcher

(♦) :: ∀ (tg::Symbol). KnownSymbol tg
⇒ SM tg → SM tg → SM tg

(SM x xis) ♦ (SM y yis)
= SM (x � y) (xis' ++ xyis ++ yis')
where
vtg = fromString (symbolVal (Proxy :: Proxy tg))
xis' = map (castGoodIndex vtg x y) xis
xyis = makeNewIndices x y vtg
yis' = map (shiftStringRight vtg x y) yis

Capturing the target tg as a type parameter is critical for the Haskell
type system to specify that both arguments of (♦) are string match-
ers on the same target. Next, we explain the details of the three
indexing operations, namely 1) casting the old le� indices, 2) creat-
ing new indices, and 3) shi�ing of the old right indices.

1) Cast Good Indices If i is a good index for the string x on
the target tg, then i is also a good index for the string x � y on
the same target, for any y. �is property cannot be automatically
proved by Liquid Haskell, instead it is explicitly encoded in the
function castGoodIndex.

castGoodIndex
:: tg:RString → x:RString → y:RString
→ i:GoodIndex x tg
→ {v:GoodIndex (x � y) tg | v = i}

castGoodIndex tg x y i
= subStrAppendRight x y (lenStr tg) i 8cast8 i

�e de�nition of castGoodIndex is a re�nement type, safe cast
on the argument i that uses the assumed string property that
appending any string y to the string x preserves the substrings of x
between i and j, when i + j does not exceed the length of x.

assume subStrAppendRight
:: x:RString → y:RString → j:Integer
→ i:{Integer | i + j ≤ lenStr x }
→ { subString x i j = subString (x � y) i j }

Re�nement type safe casting is performed via the function cast
p x that returns x and enforces the properties of p in the logic.

cast :: b → x:a → {v:a | v = x}
cast _ x = x

In the logic, cast p x is re�ected as x, allowing p to be any arbi-
trary (i.e., non-re�ected) Haskell expression.

2) Creation of new indices Appending two input strings x and
y may create new good indices, i.e., the indices xyis in Figure 2.
For instance, appending "ababcab" with "cab" leads to a new
occurrence of "abcab" at index 5. �ese new good indices can

appear only at the last lenStr tg - 1 positions of the le� input x.
�e function makeNewIndices detects all such good new indices.

makeNewIndices :: x:RString → y:RString
→ tg:RString → [GoodIndex (x � y) tg]

makeNewIndices x y tg
| lenStr tg < 2 = []
| otherwise = makeIndices (x � y) tg lo hi
where

lo = maxInt (lenStr x - (lenStr tg - 1)) 0
hi = lenStr x - 1

If the length of the tg is less than 2, then no new good indices
can be created. Otherwise, the call on makeIndices returns all the
good indices of the input x � y for target tg in the range from
maxInt (lenStr x - (lenStr tg - 1)) 0 to lenStr x - 1.

Generally, makeIndices s tg lo hi returns the good indices
of the input string s for target tg in the range from lo to hi by
recursively checking one-by-one all the indices from lo to hi.

makeIndices :: s:RString → tg:RString
→ lo:Nat → hi:Integer → [GoodIndex s tg]

makeIndices s tg lo hi
| hi < lo = []
| isGoodIndex s tg lo = lo:rest
| otherwise = rest
where

rest = makeIndices s tg (lo + 1) hi

Note that makeNewIndices does not scan all the input x and y,
instead only scans at most lenStr tg positions. �us, the time
complexity to create the new indices is linear on the size of the tar-
get but independent of the size of the input, allowing parallelization
of string matching to lead to runtime speedups.

�e implementation of makeIndices is operationally equivalent
to filter (isGoodIndex s tg) [lo .. hi]. Yet, the use of list
library functions is not yet allowed in functions re�ected into the
logic, thus makeIndices should be recursively de�ned from scratch.

3) Shi� Good Indices If i is a good index for the string y on the
target tg, then shi�ing i right lenStr x units gives a good index
for the string x � y on tg, as encoded in the following function.

shiftStringRight :: tg:RString → x:RString
→ y:RString → i:GoodIndex y tg
→ {v:(GoodIndex (x � y) tg) | v = i + lenStr x}

shiftStringRight tg x y i
= subStrAppendLeft x y (lenStr tg) i

8cast8 i + lenStr x

�e de�nition of shiftStringRight performs the appropriate in-
dex shi�ing and casts the re�nement type of the shi�ed index. Type

A Tale of Two Provers Haskell ’17, May 2017, USA

casting uses the assumed property on strings that substrings are
preserved on le� appending, i.e., the substring of y from i of size j
is equal to the substring of x � y from lenStr x + i of size j.

assume subStrAppendLeft :: x:RString → y:RString
→ j:Integer → i:Integer →
{subStr y i j = subStr (x � y) (lenStr x + i) j}

5.2.1 String Matching is a Monoid
Next we prove that the methods ϵ and (♦) satisfy the monoid laws.

�eorem 5.1 (SM is a Monoid). (SM t, ϵ , ♦) is a monoid.

Proof. We prove that string matching is a monoid by providing safe
proof terms for the monoid laws of De�nition 2.1:

idLeft :: x:SM t → {ϵ ♦ x = xs}

idRight :: x:SM t → {x ♦ ϵ = x}

assoc :: x:SM t → y:SM t → z:SM t

→ {x ♦ (y ♦ z) = (x ♦ y) ♦ z}

First, we prove le� identity using PLE, le� identity on string and
list and two helper lemmata.

idLeft (SM i is)
= idLeftStr i ∧. idLeftList is
∧. mapShiftZero tg i is ∧. newIsNullLeft i tg
where
tg = fromString (symbolVal (Proxy :: Proxy t))

�e �rst lemma says that shi�ing indices by the length of the empty
string is an identity and is proved by induction on the input list.

mapShiftZero :: tg:RString → i:RString
→ is:[GoodIndex i target]
→ {map (shiftStringRight tg η i) is = is}

�e second helper lemma states than appending with the empty
string creates no new indexes, as the new indexes would belong
into the empty range from 0 to -1.

newIsNullLeft :: s:RString → t:RString
→ {makeNewIndices η s t = []}

Similarly, we prove right identity using two helper lemmata that
encode that casting is an identity and that appending with the
empty string creates no new indexes.

Finally, we prove associativity by showing equality of the le�
((x ♦ y) ♦ z) and right (x ♦ (y ♦ z)) associative string match-
ers. To prove equality of the two string matchers we show that the
input and indices �elds are respectively equal. Equality of the input
�elds follows by associativity of RStrings. To prove equality of the
index list we observe that irrespective of the mappend precedence,
the indices can be split in �ve groups: the indices of the input x, the
new indices from mappending x and y, the indices of the input y,
the new indices from mappending y and z, and the indices of the in-
put z. A�er this observation the proof proceeds in three steps. First,
we group the indices in the �ve lists indices using list associativity
and distribution of index shi�ing. �en, we prove equivalence of
di�erent group representations, since the representation of each
group depends on the order of appending. Finally, we wrap the
index groups back to string matchers using list associativity and
distribution of casts. �

5.3 String Matching Monoid Morphism
Next, we de�ne the function toSM which computes the string
matcher for the input string on the type level target.

toSM :: ∀ (tg :: Symbol). (KnownSymbol tg)
⇒ RString → SM tg

toSM input = SM input (go input tg')
where

tg' = fromString (symbolVal (Proxy :: Proxy tg))
go x tg = makeIndices x tg 0 (lenStr x - 1)

We prove in [29] that toSM is a monoid morphism.

�eorem5.2. �e function toSM is a morphism between themonoids
(RString, η, �) and (SM t, ϵ , ♦); since the below morphism function
has a valid inhabitant.

morphismtoSM :: x:RString → y:RString →
{ toSM η = ϵ ∧ toSM (x � y) = toSM x ♦ toSM y}

5.4 Parallel String Matching
Finally, we de�ne toSMPar as a parallel version of toSM, using
machinery of § 3, and prove that the sequential and parallel versions
always give the same result.

toSMPar :: ∀ (tg::Symbol). (KnownSymbol tg)
⇒ Integer → Integer → RString → SM tg

toSMPar i j = pmconcat i . pmap toSM . chunkStr j

First, chunkStr splits the input into chunks of size j. �en, pmap ap-
plies toSM at each chunk in parallel. Finally, pmconcat concatenates
the mappend chunks in parallel using the monoidal operation for
SM tg. Correctness of toSMPar directly follows from �eorem 3.3.

�eorem 5.3 (Correctness of Parallel String Matching). For each
parameter i and j, and input x, toSMPar i j x is equal to toSM x.

correctness :: i:Integer → j:Integer → x:RString
→ {toSM x = toSMPar i j x}

Proof. �e proof follows by direct application of �eorem 3.3 on
the chunkable monoid (RString, η, �) (by Assumption 1) and the
monoid (SM t, ϵ , ♦) (by �eorem 5.1).

correctness i j x
= toSMPar i j x
==. pmconcat i (pmap toSM (chunkStr j x))
==. toSM x
∴ parallelismEq toSM morphismtoSM x i j
*** QED

Note that application of the theorem parallelismEq requires a
proof that its �rst argument toSM is a morphism. By �eorem 3.3,
the required proof is provided as the function morphismtoSM. �

6 String Matching in Coq
In this section we present the highlights of replicating the Liq-
uid Haskell proof of correctness for the parallelization of a string
matching algorithm into Coq.

Haskell ’17, May 2017, USA Niki Vazou, Leonidas Lampropoulos, and Je� Polakow

6.1 E�cient vs. Veri�ed Library Functions
In Liquid Haskell we used a wrapper around ByteStrings to rep-
resent e�cient but unveri�ed string manipulation functions. �us,
we assumed that the ByteString functions satisfy the monoid laws.
On the contrary, our Coq proof used the veri�ed but ine�cient,
built-in implementation of Strings. We relied on the library the-
orems to prove most of the required String properties, while we
still admi�ed theorems not directly provided by the library (e.g.,
the interoperation between take and drop). Although Coq does
not directly provide optimized libraries, one can achieve runtime
e�ciency by extracting e.g. String to ByteString at runtime.

6.2 Executable vs. Inductive Speci�cations
In Liquid Haskell re�nements on types constitute a decidable, prov-
ably terminating, boolean subset of Haskell values, i.e., re�nements
can be executed at runtime returning either True or False. For
example, using the GoodIndex type alias of § 5.2, if Liquid Haskell
decides that i is a good index on the input for the target (i.e., i
:: GoodIndex input tg), then isGoodIndex input tg i prov-
ably returns True at runtime. On the other hand, Coq distinguishes
between the logical (Prop) and the executable (Type) portions of
the code. �is separation both facilitates reasoning on the logical
code and allows for a clean extraction procedure, but introduces
di�culties when the logical speci�cations also need to be executed.
For example, we can de�ne isGoodIndex to live in Prop 4 .

Definition isGoodIndex in tg i
:= substring i (length tg) in = tg.

In order to test whether a given index i is a good index for some
given input and target strings, we need a decidability (i.e., exe-
cutable) procedure for isGoodIndex.

Definition isGoodIndexDec input tg i:
{isGoodIndex input tg i} +
{˜ (isGoodIndex input tg i)}.

Instead of returning a simple boolean, the decidability procedure re-
turns a proof carrying, executable sum that also contains additional
content to construct appropriate proof terms.

6.3 Intrinsic vs. Extrinsic Veri�cation
In § 4.1 we already discussed how Liquid Haskell favors intrin-
sic while Coq favor extrinsic veri�cation. In the intrinsic, Liquid
Haskell world the speci�cations come embedded into the functions
and data types, while in Coq’s extrinsic world speci�cations and
de�nitions are clearly separated. In the string matching proof we
run into the case where intrinsic veri�cation was unavoidable in
Coq, leading to (syntactic) proof equivalence obligations that could
only be resolved via the axiom of proof irrelevance.

The Liquid Haskell Approach In § 5.2 we de�ned the Liquid
Haskell string matcher SM tg to contain an input and the list of
indices, i.e., a list intrinsically re�ned to contain only indices that
are good for input on the target. �is intrinsic speci�cation as-
sures that each string matcher only contains valid indices while the
validity proof is not a Haskell object, but it is externally performed
by the SMT solver.
4A di�erent approach would be to de�ne isGoodIndex as a boolean computation and
then use ssreflect’s views to obtain convenient elimination principles. We opted for
the logical approach to be�er highlight the prover’s di�erences.

The ExtrinsicApproach When porting the string matching proof
to Coq, to keep implementation clean from proofs, we followed
an extrinsic approach. We de�ned the string matcher data type to
contain the input string and any list of natural numbers as indices.

Inductive SM (tg : string) :=
| Sm : ∀ (in : string) (is : list nat), SM tg.

Extrinsically, we speci�ed that a string matcher SM tg is valid when
the indices list contains only valid indices.

Inductive validSM tg : SM tg → Prop

With the above extrinsic de�nition of the String Matcher, the asso-
ciativity property of (♦) does not hold, as the property explicitly
requires the middle string matcher to be valid:

Theorem sm_assoc tg (sm1 sm2 sm3 : SM tg) :
validSM tg sm2 →
sm1 ♦ (sm2 ♦ sm3) = (sm1 ♦ sm2) ♦ sm3.

�us, the extrinsic (♦) does not satisfy the associativity monoid
law, as it comes with the extra validity assumption.

The Intrinsic Approach requires Proof Irrelevance To de�ne
an associative mappend string matching operator we intrinsically
restrict the type of sm to carry a proof of valid indices.

Inductive sm tg : Type :=
| mk_sm : ∀ in is,

Forall (isGoodIndex in tg) is → sm tg.

Extending the string matching sm to carry validity proofs implies
that two string matchers are equal only when their respective proofs
are syntactically equal. To discharge the proof equality obligation,
we accept two string matchers to be equal irrespective of equality
on their proof terms.

Lemma proof_irrelevant_equality
tg xs xs' l H l' H' : xs = xs' → l = l'
→ mk_sm tg xs l H = mk_sm tg xs' l' H'.

We prove the above lemma using Proof Irrelevance, an admi�able
axiom, consistent with Coq’s logic, which states that any two proofs
of the same property are equal. �us, the Coq proof intrinsic reason-
ing (used to prove associativity) required the assumption of proof
irrelevance. On the contrary in Liquid Haskell’s proof, speci�ca-
tions are intrinsically embedded in the de�nitions but their proofs
are automatically and externally constructed by the SMT solver. In
Liquid Haskell the user does not have access to the automatically
generated proof terms, i.e., proof equality cannot even be speci�ed
(and is never required).

7 Evaluation
7.1 �antitative Comparison
Table 1 summarizes the quantitative evaluation of our two proofs
as implemented in [29]: the generalized equivalence property of
parallelization of monoid morphisms and its application on the
parallelization of a naı̈ve string matcher. We used three provers
to conduct our proofs: Coq, Liquid Haskell, and Liquid Haskell
extended with the PLE (Proof by Logical Evaluation § 2.3) heuristic.
�e Liquid Haskell proof was originally speci�ed and veri�ed by
the �rst author within 2 months. Most of this time was spent on

A Tale of Two Provers Haskell ’17, May 2017, USA

Table 1. �antitative evaluation. We report veri�cation Time (in seconds) and LoC required to verify monoid morphism parallelization
and its application to the string matcher. We split proofs of Coq (1136 LoC in total), Liquid Haskell (1428 LoC in total) and Liquid Haskell
with PLE (1134 LoC in total) into speci�cations, proof terms and executable code.

Property Coq Liquid Haskell Liquid Haskell with PLE
Time Spec Proof Exec Time Spec Proof Exec Time Spec Proof Exec

Parallelization 5 121 329 39 8 54 164 78 5 62 73 78
String Matcher 33 127 437 83 87 199 831 102 1287 223 596 102
Total 38 248 766 122 95 253 995 180 1292 285 669 180

iterating between incorrect implementations of the string matching
implementation (and the proof) based on Liquid Haskell’s type
errors. A�er the Liquid Haskell proof was �nalized, it was ported
to Coq by the second author within 2 weeks. We note that the
proofs were neither optimized for size nor for veri�cation time.

Veri�cation time We veri�ed our proofs using a machine with
an Intel Core i7-4712HQ CPU and 16GB of RAM. Veri�cation in Coq
is the fastest requiring 38 sec in total. Liquid Haskell requires x2.5
as much time while it needs x34 time using PLE. �is slowdown
is expected given that, unlike Coq that is checking the proof, Liq-
uid Haskell uses the SMT solver to synthesize proof terms during
veri�cation, while PLE is an under-developed, non-optimized ap-
proach to heuristically synthesize proof terms by static evaluation.
In small proofs, like the generalized parallelization theorem, PLE
can speedup veri�cation time as proofs are quickly synthesized due
to the fewer re�ected functions and smaller proof terms.

Veri�cation size We split the total lines of code into three cate-
gories for both Coq and Liquid Haskell.
• Spec represents the theorem and lemma de�nitions, and the

re�nement type speci�cations, resp..
• Proofs represents the Coq proof scripts and the Haskell proof

terms (i.e., Proof resulting functions), resp..
• Exec represents the executable portion of the code.
Counting both speci�cations and proofs as veri�cation code, we
conclude that in Coq the proof requires 8x the lines of the executable
code, mostly required to deal with the non-structural recursion.
�is ratio drops to 7x for Liquid Haskell, because the executable
code in the Haskell implementation is increased to include a basic
string matching interface for printing and testing the output. Fi-
nally, the ratio drops to 5x with the PLE heuristic, as the proof terms
are shrunk without any modi�cation to the executable portion.

Evaluation of PLE PLE is used to synthesize non-sophisticated
proofs, leading to smaller proof terms but slower veri�cation time.
We used PLE to synthesize 31 out of the 43 total number of proof
terms. PLE failed to synthesize the rest proof terms due to: 1.incom-
pleteness: PLE is unable to synthesize proof terms when the proof
structure does not follow the structure of the re�ected functions or
2. veri�cation slowdown: in big proof terms there are many inter-
mediate terms to be evaluated which dreadfully slows veri�cation.
Formalization and optimization of PLE, so that it synthesizes more
proof terms faster, is le� as future work.

7.2 �alitative Comparison
We summarize the essential di�erences in theorem proving using
Liquid Haskell versus Coq based on our experience (§ 4 and § 6).

�ese di�erences validate and illustrate the distinctions that have
been previously [3, 22, 23] described between the two provers.

Theorem Provers vs. Proof Assistants Coq is not only a theo-
rem prover, but a proof assistant that provides a semi-interactive
proving environment to explain failing proofs. Liquid Haskell,
on the other hand, is designed as an automated re�nement type
checker. �us, it is agnostic to the speci�c application of theorem
proving providing no interactive environment to aid proof gener-
ation. In case of failure, Liquid Haskell provides the exact source
location of the failing theorem, but will not currently a�empt any
Coq-like sub-goal analysis to assist theorem proving.

General Purpose vs. Veri�cation Speci�c Languages Haskell
is a general purpose language with concurrency support and op-
timized libraries (e.g., parallel, Bytestring) that can be used
(§ 4.5) to build real applications. Coq provides minimal support
for such features: dealing with essential non-structural recursion
pa�erns is inconvenient while access to parallel primitives can
only be gained through extraction. However, unlike Liquid Haskell,
Coq comes with a large standard library of theorems and tactics
that ease the burden of the prover (§ 4.2 and § 6.1). Finally, Coq’s
trusted computing base (TCB) is just it’s typechecker, while Liq-
uid Haskell’s TCB contains GHC’s type inference, Liquid Haskell
constraint generation and the SMT solver itself.

SMT-automation vs. Tactics Liquid Haskell uses an SMT-solver
to automate proofs over decidable theories (such as linear arith-
metic, uninterpreted functions) which reduces the proof burden
but increases the veri�cation time. On the other hand, Coq users
enjoy some level of proof automation via library or hand-cra�ed
tactics, but even sophisticated decidability procedures, like omega
for Presburger arithmetic, have incomplete implementations and
produce large, slow-to-check proof terms (§ 4.3).

Intrinsic vs. Extrinsic veri�cation Liquid Haskell naturally
uses intrinsic veri�cation; i.e., speci�cations are embedded in the
de�nitions of the functions, are proved (automatically by SMTs)
at function de�nitions, and are assumed at function calls. Coq
naturally uses extrinsic veri�cation to separate the functionality of
de�nitions from their speci�cations. �e speci�cations can then be
independently proved (§ 4.1), making function de�nitions cleaner.

Semantic vs. Syntactic Termination Checking Liquid Haskell
uses a semantics termination checker that proves termination given
a wellfounded termination metric. On the contrary, Coq allows
�xpoints to be de�ned only by using syntactical subterms of some
principal argument in recursive calls, requiring advanced transfor-
mation techniques (§ 4.4) for de�nitions outside of this restrictive
recursion pa�ern.

Haskell ’17, May 2017, USA Niki Vazou, Leonidas Lampropoulos, and Je� Polakow

8 Related Work
SMT-Based Veri�cation SMT solvers have been used to auto-
mate reasoning on veri�cation oriented languages like Dafny [13],
F* [23] and Why3 [8]. Designed for veri�cation, there languages
o�er limited support for the advanced language features – like
parallelism and optimized libraries – that we use in our veri�ed
implementation. All these languages allow for highly expressive
speci�cations, which makes SMT veri�cation undecidable in the-
ory [6] and unstable in practice [14]. Re�nement types [11] on
the other hand, extend existing general purpose languages with
decidable speci�cations. �at is, without re�nement re�ection [26],
re�nement types only allow “shallow” program speci�cations, i.e.,
properties that only talk about abstractions of program functions
but not functions themselves.
Dependent Types On the other hand, dependent type systems,
like Coq [2], Adga [19] and Isabelle/HOL [20], allow for “deep” spec-
i�cations which talk about program functions, such as the equiv-
alence reasoning we presented. �ese systems allow for tactics
and heuristics that aid proof generation but lack SMT automations
and general-purpose language features, like non-termination. Zom-
bie [3] and F* [23] allow dependent types to co-exist with divergent
and e�ectful programs, but still lack the optimized libraries, like
ByteString, which come with mature languages like Haskell.

Haskell itself is becoming a dependently typed language. Eisen-
berg [7] aims to make type-level computations as expressive as
term-level computations. �ough expressive enough, dependent
Haskell does not provide SMT- nor tactic-based automation, mak-
ing realistic theorem proving, e.g., our 1136 LoC tactic-aided Coq
proof, unapproachable [16]. In the future, we would like to com-
bine Haskell’s dependent types with Liquid Haskell’s automation
towards an expressive and usable prover. In fact, our monoid string
matcher proof already depends on Haskell’s type level strings.
Parallel CodeVeri�cationDependent type theorem provers have
been used before to verify parallel code. BSP-Why [10] is an exten-
sion to Why2 that is using both Coq and SMTs to discharge user
speci�ed veri�cation conditions. Swierstra [24] formalized mutable
arrays in Agda to reason about distributed maps and sums. Finally,
on a work closely related to ours, SyDPaCC [17] is a Coq library
that automatically parallelizes list homomorphisms by extracting
parallel OCaml versions of user provided Coq functions. SyDPaCC
used maximum pre�x sum as a case study, whose morphism veri�-
cation is simpler than string matching. Compared to our 1428 LoC
Liquid Haskell executable and veri�ed code, the SyDPaCC imple-
mentation uses three di�erent languages: 2K lines of Coq, 600 lines
of OCaml and 120 lines of C, and is considered “very concise”. How-
ever, they actually extract a parallel version to OCaml while our
Coq development would require similar additional non-Coq code if
we were to extract it to obtain an executable program.

9 Conclusion
We used Liquid Haskell as a theorem prover to verify parallelization
of monoid morphisms and speci�cally a realistic string matcher.
We ported our 1428 LoC proof to Coq (1136 LoC) and compared the
two provers. We conclude that the strong point of Liquid Haskell as
a theorem prover is that the proof refers to executable Haskell code

while being SMT-automated over decidable theories (like linear
arithmetic). On the other hand, Coq aids veri�cation providing a
semi-interactive proving environment and a large pool of already
developed theorems, tactics, and methodologies that the user can
lean on. �e development of a Coq-like proving environment,
library theorems, and proof automation techniques is feasible and
is required to establish Liquid Haskell as a usable theorem prover.

Acknowledgments
We thank Antal Spector-Zabusky, Arthur Azevedo de Amorim,
George Karachalias, Nodari Sitchinava, Ranjit Jhala, Valentin Robert,
and the anonymous reviewers for their insightful comments. �is
work was partialy supported by Awake Networks and then NSF
awards #1421243, #1521523, #1561209, and #1518844.

References
[1] C. Barre�, A. Stump, and C. Tinelli. �e SMT-LIB Standard: Version 2.0. 2010.
[2] Y. Bertot and P. Castéran. Coq’Art: �e Calculus of Inductive Constructions.

Springer Verlag, 2004.
[3] C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and programs in a

dependently typed language. In POPL, 2014.
[4] A. Chlipala. Certi�ed Programming with Dependent Types: A Pragmatic Introduc-

tion to the Coq Proof Assistant. �e MIT Press, 2013.
[5] T. Coq development team. �e Coq proof assistant reference manual, 2009. URL

h�p://coq.inria.fr/doc/.
[6] L. de Moura and N. Bjorner. E�cient E-matching for Smt Solvers. In CADE,

2007.
[7] R. A. Eisenberg. Dependent Types in Haskell: �eory and Practise. PhD thesis,

UPenn, 2016.
[8] J. Filliâtre and A. Paskevich. Why3 – Where Programs Meet Provers. In ESOP,

2013.
[9] C. Flanagan. Hybrid type checking. In POPL, 2006.

[10] J. Fortin and F. Gava. BSP-Why: A tool for deductive veri�cation of BSP algo-
rithms with subgroup synchronisation. In Int J Parallel Prog, 2015.

[11] T. Freeman and F. Pfenning. Re�nement types for ML. In PLDI, 1991.
[12] G. Gonthier and A. Mahboubi. A small scale re�ection extension for the Coq

system. Technical report, Microso� Research INRIA, 2009.
[13] K. R. M. Leino. Dafny: An automatic program veri�er for functional correctness.

LPAR, 2010.
[14] K. R. M. Leino and C. Pit-Claudel. Trigger selection strategies to stabilize program

veri�ers. 2016.
[15] X. Leroy. Formal certi�cation of a compiler back-end, or: programming a

compiler with a proof assistant. In POPL, 2006.
[16] S. Lindley and C. McBride. Hasochism: the pleasure and pain of dependently

typed haskell programming. In Haskell, 2013.
[17] F. Loulergue, W. Bousdira, and J. Tesson. Calculating Parallel Programs in Coq

using List Homomorphisms. In International Journal of Parallel Programming,
2016.

[18] M. Moskal, J. Lopuszański, and J. R. Kiniry. E-matching for Fun and Pro�t. In
Electron. Notes �eor. Comput. Sci., 2008.

[19] U. Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers, 2007.

[20] L. C. Paulson. Isabelle - A Generic Theorem prover. Lecture Notes in Computer
Science, 1994.

[21] W. Pugh. �e omega test: A fast and practical integer programming algorithm
for dependence analysis. In Supercomputing, 1991.

[22] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.
[23] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhar-

gavan, C. Fournet, P. Strub, M. Kohlweiss, J. Zinzindohoue, and S. Zanella-
Béguelin. Dependent types and multi-monadic e�ects in F*. In POPL, 2016.

[24] W. Swierstra. More dependent types for distributed arrays. Higher-Order and
Symbolic Computation, 2010.

[25] N. Vazou. Liquid Haskell: Haskell as a theorem prover. PhD thesis, UCSD, 2016.
[26] N. Vazou and R. Jhala. Re�nement Re�ection. arXiv:1610.04641, 2016.
[27] N. Vazou, E. L. Seidel, and R. Jhala. Liquidhaskell: Experience with re�nement

types in the real world. In Haskell Symposium, 2014.
[28] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Re�nement

Types for Haskell. In ICFP, 2014.
[29] N. Vazou, L. Lampropoulos, and J. Polakow. Implementation. 2017. h�ps:

//github.com/nikivazou/verified string matching.

http://coq.inria.fr/doc/
https://github.com/nikivazou/verified_string_matching
https://github.com/nikivazou/verified_string_matching

	Abstract
	1 Introduction
	2 Liquid Haskell as a Theorem Prover
	2.1 Reflection of Lists into Logic
	2.2 Left Identity
	2.3 PLE: Proof by Logical Evaluation
	2.4 Right Identity
	2.5 Associativity
	2.6 Lists are a Monoid

	3 Verified Parallelization of Morphisms
	3.1 Lists are Chunkable Monoids
	3.2 Parallel Map
	3.3 Parallel Monoidal Concatenation
	3.4 Parallel Monoid Morphism

	4 Monoid Morphism Parallelization in Coq
	4.1 Intrinsic vs. Extrinsic Verification
	4.2 User-Defined vs. Library Functions
	4.3 SMT- vs. Tactic-Based Automation
	4.4 Semantic vs. Syntactic Termination Checking
	4.5 Executable vs. Axiomatized Parallelism

	5 Case Study: Correctness of Parallel String Matching in Liquid Haskell
	5.1 Strings are assumed to be Chunkable Monoids
	5.2 String Matching Monoid
	5.3 String Matching Monoid Morphism
	5.4 Parallel String Matching

	6 String Matching in Coq
	6.1 Efficient vs. Verified Library Functions
	6.2 Executable vs. Inductive Specifications
	6.3 Intrinsic vs. Extrinsic Verification

	7 Evaluation
	7.1 Quantitative Comparison
	7.2 Qualitative Comparison

	8 Related Work
	9 Conclusion
	References

