
Property-Based Testing For OCaml through Coq
Paaras Bhandari

University of Maryland College Park
paaras99@umd.edu

Leonidas Lampropoulos
University of Maryland College Park

leonidas@umd.edu

Abstract—We will present a property-based testing framework
for OCaml that leverages the power of QuickChick, a popular
and mature testing plugin for the Coq proof assistant, by auto-
matically constructing a extraction-based shim between OCaml
and Coq. That gives OCaml programmers access to the advanced
automation and fuzzing facilities that QuickChick provides.

I. INTRODUCTION

Property-based random testing is a popular testing tech-
nique used to ensure that a program conforms to an exe-
cutable specification. Popularized by Haskell’s QuickCheck
[9], property-based testing libraries have found their way to
most languages, including OCaml with straightforward trans-
lations like QCheck [1] and ocaml-quickcheck[2], or more
ambitious frameworks incorporating coverage-guided fuzzing
like Crowbar [10].

In such frameworks, users write properties of the program
under test, and the tool is in charge of generating a large
number of random inputs, executing the property, and, if a
counterexample is found, minimizing it to report it to the user.
For example, a property that a list reverse function should
satisfy is that it preserves the length of the input list:

let reverse_prop (l : int list) =
length l = length (reverse l)

To test such a property, a property-based testing framework
generates random lists of integers, executes reverse_prop,
and checks if the result is false. If it is, it will try to
shrink—i.e., minimize—the list (e.g. by dropping elements
or by shrinking the elements themselves), before presenting
a minimal counterexample to the user.

But how does a tool know these lists are to be gener-
ated and shrunk? In many cases (including QCheck, ocaml-
quickcheck, and Crowbar), the user has to write programs that
perform this generation and minimization, usually relying on
a comprehensive library of expressive combinators. However,
this process is tedious, error-prone, and hinders adoption of
property-based testing. To that end, a lot of work has been to
semi- or fully- automate various aspects of property-based test-
ing: in Haskell’s QuickCheck [3] and Coq’s QuickChick[8],
typeclasses are used to automatically dispatch the appropriate
generators and meta-programming is used to automatically
derive such generators for user-defined datatypes. Moreover,
researchers have added support for advanced features in such
frameworks, from generating constrained inputs (e.g. sorted
lists, red-black trees, well-typed lambda terms), to AFL-style
coverage-guided fuzzing [5, 6, 7].

Instead of developing or extending an OCaml tool for
property-based testing by duplicating years of research and
engineering effort, in this work we show how we can leverage
prior work on QuickChick by building a bridge between
OCaml and Coq through extraction.

II. PROPERTY-BASED TESTING IN OCAML, THROUGH COQ

Coq is a proof assistant whose functional language, Gallina,
is very similar to OCaml. Programs in Gallina can be run
via extraction to OCaml, which can be highjacked to allow
for hybrid Gallina/OCaml programs. We first show how this
can be achieved manually, and then discuss our work on
automating it.

Linking OCaml and Coq

Consider a polymorphic version of the reverse_prop
property of the previous section, implemented in a List
module:

let reverse_prop (l : ’a list) =
length l = length (reverse l)

A QuickChick user can test this OCaml property by simply
adding the definition as an axiom in Coq and ensuring it
extracts to its OCaml counterpart:

Axiom test_reverse_prop :
forall {A}, list A -> bool.

Extract Constant test_reverse_prop =>
"List.test_reverse_prop".

QuickChick test_reverse_prop.

QuickChick would use typeclass resolution to figure out
that it needs to generate lists (and defaults to lists of integers
for polymorphic properties), extract the code necessary to test
test_reverse_prop, and when the property itself needs
to be executed, call the specified OCaml function. To ensure
that this function can be found, a user can specify either a
concrete path:

QCInclude "list.ml".

or an opam library to link at compile time:

QCOpen "list".



Handling User-Defined Types

In addition to typeclass resolution, QuickChick users enjoy
a powerful derivation mechanism that provides generators,
printers, and shrinkers for free. For example, in order to test
a property of a QCheck user would have to roll their own
generator:

type tree =
| Leaf of int
| Node of tree * tree

let leaf x = Leaf x
let node x y = Node (x,y)

let tree_gen = QCheck.Gen.(sized @@ fix
(fun self n -> match n with
| 0 -> map leaf nat
| n ->
frequency
[1, map leaf nat;
2, map2 node (self (n/2)) (self (n/2))

]))

The particular details of this generator are not important—it’s
a simple recursive generator that picks between generating a
Leaf or a Node to generate a tree of up to a given size. What
is important is that a user has to write it.

On the other hand, QuickChick provides such generators for
free through OCaml meta-programming:

Inductive tree :=
| Leaf : int -> tree
| Node : tree -> tree -> tree.

Derive (Arbitrary, Show) for tree.

The snippet above does not only create a generator similar in
behavior to the QCheck one, but also a printer and a minimizer.

So how can an OCaml user take advantage of this au-
tomation support? Well, the user only needs to extract the
Coq definition of tree to the OCaml one! Assuming that
the OCaml implementation lies in a Tree module, this is as
simple as:

Extract Inductive tree =>
"Tree.tree"
["Tree.Leaf" "Tree.Node"].

Automatically Creating the Extraction Shim

Naturally, if we required an OCaml user to perform all of
this manually, we’d just be exchanging one boilerplate for
another. To that end, we automated this process to provide
a seamless experience to OCaml users.

A user need only specify the name of the property under
test and its location in their OCaml code:

let main =
quickChick "list" reverse_prop

This will generate a Coq file with the appropriate boiler-
plate, compile it, extract the relevant property to a temporary
OCaml file, and execute it. To generate the boilerplate, we
recursively check (using regular expressions) which user-
defined types are involved in the property and convert them to
Coq type definitions using coq-of-ocaml [4]. These Coq type
definitions are then used to define the types in the Coq script.
Finally, we Derive the generator, printer, and minimizer
before declaring the property-test as an axiom.

III. PRESENTATION

The proposed presentation will be an OCaml demo of the
tool, covering its base workflow, and showcasing the features
of QuickChick that it grants OCaml users access to.

REFERENCES

[1] c-cube/qcheck: QuickCheck inspired property-based
testing for OCaml. https://github.com/c-cube/qcheck.

[2] camlunity/ocaml-quickcheck: OCaml QuickCheck.
https://github.com/camlunity/ocaml-quickcheck.

[3] Koen Claessen and John Hughes. “QuickCheck: a
lightweight tool for random testing of Haskell pro-
grams”. In: 5th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP). ACM, 2000,
pp. 268–279. URL: http://www.eecs.northwestern.edu/
∼robby/courses/395-495-2009-fall/quick.pdf.

[4] Clarus. clarus/coq-of-ocaml. URL: https://github.com/
clarus/coq-of-ocaml.

[5] Leonidas Lampropoulos. “Random Testing for Lan-
guage Design”. PhD thesis. University of Pennsylvania,
2018.

[6] Leonidas Lampropoulos, Michael Hicks, and Benjamin
C. Pierce. “Coverage Guided, Property Based Testing”.
In: Proceedings of the ACM Conference on Object-
Oriented Programming Languages, Systems, and Ap-
plications (OOPSLA). Oct. 2019.

[7] Leonidas Lampropoulos, Zoe Paraskevopoulou, and
Benjamin C. Pierce. “Generating good generators for
inductive relations”. In: PACMPL 2.POPL (2018), 45:1–
45:30. DOI: 10.1145/3158133. URL: http://doi.acm.org/
10.1145/3158133.

[8] Zoe Paraskevopoulou et al. “Foundational Property-
Based Testing”. In: 6th International Conference on
Interactive Theorem Proving (ITP). Ed. by Christian
Urban and Xingyuan Zhang. Vol. 9236. Lecture Notes
in Computer Science. Springer, 2015, pp. 325–343.
ISBN: 978-3-319-22101-4. URL: http://prosecco.gforge.
inria.fr/personal/hritcu/publications/foundational- pbt.
pdf.

[9] QuickCheck: Automatic testing of Haskell programs.
https://hackage.haskell.org/package/QuickCheck.

[10] stedolan/crowbar: Property fuzzing for OCaml. https :
//github.com/stedolan/crowbar.


