
Ode on a Random Urn (Functional Pearl)
Leonidas Lampropoulos
University of Pennsylvania
llamp@seas.upenn.edu

Antal Spector-Zabusky
University of Pennsylvania
antals@seas.upenn.edu

Kenneth Foner
University of Pennsylvania
kfoner@seas.upenn.edu

Abstract
We present the urn, a simple tree-based data structure that supports
sampling from and updating discrete probability distributions in
logarithmic time. We avoid the usual complexity of traditional self-
balancing binary search trees by not keeping values in a specific
order. Instead, we keep the tree maximally balanced at all times
using a single machine word of overhead: its size.

Urns provide an alternative interface for the frequency combi-
nator from the QuickCheck library that allows for asymptotically
more efficient sampling from dynamically-updated distributions.
They also facilitate backtracking in property-based random testing,
and can be applied to such complex examples from the literature as
generating well-typed lambda terms or information flow machine
states, demonstrating significant speedups.

CCS Concepts • Theory of computation → Data structures
design and analysis;

Keywords Data Structure, Sampling, RandomTesting, QuickCheck,
Urn
ACM Reference Format:
Leonidas Lampropoulos, Antal Spector-Zabusky, and Kenneth Foner. 2017.
Ode on a Random Urn (Functional Pearl). In Proceedings of 10th ACM SIG-
PLAN International Haskell Symposium, Oxford, UK, September 7-8, 2017
(Haskell’17), 12 pages.
https://doi.org/10.1145/3122955.3122959

1 Introduction
Back in your introductory math classes, you may have encountered
word problems about urns containing balls of different colors – like
the urn in Fig. 1 – where you had to calculate the probability of
ending up with specific colors after a few draws:

Suppose you have an urn containing two red balls,
four green balls, and three blue balls. If you take three
balls out of the urn, what is the probability that two
of them are green?

This process, often referred to as sampling without replacement,
can be seen as a particular instance of a more general problem:
sampling from updatable discrete distributions. Sampling from such
distributions has many applications, ranging from distribution-
tuning in property-based random testing à la QuickCheck [2, 15]
to randomized search algorithms that need to try many different
options once [9, 13]. But what is an efficient, persistent, purely
functional representation of updatable discrete distributions?

To begin with, let’s consider how to represent static (non-updat-
able) distributions. One of the simplest representations is a list of
weighted elements. For instance, our example urn can be repre-
sented by the list

[(2,Red), (4,Green), (3,Blue)]

Haskell’17, September 7-8, 2017, Oxford, UK
2017. ACM ISBN 978-1-4503-5182-9/17/09. . . $15.00
https://doi.org/10.1145/3122955.3122959

Figure 1. A sample urn.

which tells us that the Green ball will be selected with probabil-
ity 4/(2 + 4 + 3). Indexing into a list always takes O(n) time, so
this sampling procedure will have to be linear. (We will formalize
this notion in §2.) While simplistic, this list-based representation
has been used successfully for a long time in QuickCheck, whose
frequency combinator uses this representation. In practice, while
the asymptotics of sampling from a list-based representation seem
inefficient, the common inputs to frequency are small, and so the
linear-time traversal of the list is inconsequential.

Unfortunately, this representation is not powerful enough when
working with updatable distributions: sampling without replace-
ment is only interesting if repeated, which leads to repeated traver-
sals. Moreover, each traversal requires modifying the list to update
the distribution. This produces quadratic time (and space) overhead,
which can lead to noticeable slowdowns even with relatively small
distributions.

In this paper, we present the urn, an immutable persistent data
structure that supports efficiently sampling from a distribution,
as well as efficiently updating it: inserting new (weighted) values,
removing them, or updating their weights. Our contributions are:
• We define the urn data structure and provide its Haskell
implementation1 (§3).
• We propose an efficient alternative implementation of the
core QuickCheck combinator frequency that uses urns in-
stead of lists and empirically evaluate the two versions (§4.1).
• We introduce a novel combinator for prioritized random
search, backtrack, and explore and evaluate its application
in random testing examples from the literature [7, 13] (§4.2).

We discuss related work in §5, and future directions in §6.

2 Sampling Discrete Distributions
At their core, urns represent discrete distributions.We can represent
a discrete distribution D over a set A as a nonempty set of pairs of
positive weightswi ∈ N

+ and of values xi ∈ A; that is,

D = { (w1,x1), . . . , (wn ,xn) } ⊆ (N
+ ×A), n ≥ 1.

1Full code available on Hackage: https://hackage.haskell.org/package/urn-random

https://doi.org/10.1145/3122955.3122959
https://doi.org/10.1145/3122955.3122959
https://hackage.haskell.org/package/urn-random

Haskell’17, September 7-8, 2017, Oxford, UK Leonidas Lampropoulos, Antal Spector-Zabusky, and Kenneth Foner

(2,R) (4,G) (3,B)

0 1 2 3 4 5 6 7 8

Figure 2. Indexing into the discrete distribution {(2,R), (4,G),
(3,B)}; natural number indices are placed below their correspond-
ing weight-value pair (the order is arbitrary).

LetW =
∑n
i=1wi be the sum of all the weights; then, to sample a

value from D is to pick a random xk with probabilitywk/W .
To sample from such a distribution, we use the range [0,W) as

indices into it. If we pick a natural number uniformly at random
from [0,W), we can map it to the xi : the firstw1 natural numbers
correspond to x1, the next w2 natural numbers correspond to x2,
and so on. Intuitively, we are breaking the range [0,W) into n
buckets: [0,w1), [w1,w1 +w2), and so on up through [w1 + · · · +
wn−1, w1 + · · · + wn−1 + wn = W). Then the kth bucket, which
corresponds to xk , is [k−1∑

i=1
wi ,

k∑
i=1

wi

)
and has size

k∑
i=1

wi −

k−1∑
i=1

wi = wk .

Thus, there are wk different values for each index that result in
picking this bucket. Since each index is equally likely, the total
probability of picking xk iswk/W . An instantiation of the buckets
for the distribution {(2,R), (4,G), (3,B)} – which will be a running
example for the remainder of the paper – appears in Fig. 2.

This approach is the basis of the urn sampling algorithm, as
well as the standard frequency combinator in QuickCheck and
the array-based binary search variant used in random-fu [16] (for
more about the latter two, see §5).

3 The Urn Data Structure
Since urns represent discrete distributions, their interface must
provide support for (a) constructing urns from a list of pairs of
weights and values (i.e., the list-based representation described in
§1), and (b) sampling from urns. Additionally, we want to support
(c) modifying urns in three different ways: (i) sampling without
replacement; (ii) inserting new (weighted) values; and (iii) updating
the weight and value of a sampled item.

3.1 The Urn API
The full API for urns is presented in Fig. 3; the interface is split into
five categories.
Types: These include Urn, the type of discrete distributions;

Weights in those distributions; and MonadSample, a type
class for monads that support random number generation
to enable sampling from urns, such as IO or QuickCheck’s
Gen type for random generators.2

Construction: The singleton and fromList functions create
distributions where the given values (of type a) have the
corresponding weights. The fromList function produces a
Maybe (Urn a) because distributions cannot be empty.

2While the MonadRandom type class [4] would seem to be a good fit for this purpose,
Gen is unfortunately not an instance of it.

Sampling: The sample and remove functions both pick a value
from the Urn at random, with probability proportional to its
weight. The remove function also takes that value out of the
urn (“sampling without replacement”), and so returns the
Weight of that value and Maybe the updated Urn. Note that
remove takes out the whole weight-value pair, rather than
taking out one copy of the value and reducing its weight
by 1.

Modification: The insert function simply adds a new value
to the distribution with a given weight. The update and
replace functions both choose a random value to modify,
as per sample. The update function will modify that value
and its weight, returning the old weighted value, the new
weighted value, and the new Urn; the replace function
simply overwrites the chosen value and its weight, returning
the old weight and value along with the new Urn.

Properties: Urns keep track of how many values they contain
(size) and their total weight (weight).

Coding Conventions As we saw in §2, sampling from a distri-
bution D with total weightW can be done by sampling a natural
number uniformly from [0,W) and using it as an index into D. The
MonadSample type class provides the index-generation functional-
ity; its only method is

randomWord :: MonadSample m => (Word,Word) -> m Word

where randomWord (low,high) generates a random Word chosen
uniformly from the range [low,high].

In the remainder of this section, we implement all the functions
from Fig. 3 that require randomness by phrasing them instead in
terms of indices into the urn. Every such function now requires an
additional argument of type Index, where Index is a type synonym
for Word. When formulated this way, these functions are determin-
istic. Thus, although the user-facing version of sample has type
MonadSample m => Urn a -> m a, the implementation that we
show in this section has type Urn a -> Index -> a, and similarly
for remove, update, and replace. We connect the randomized and
deterministic versions of these functions by generating random
indices with randomWord (0, w-1), where w is the total weight of
the input Urn.

3.2 A Weighty Matter
The Urn abstract data type, behind the scenes, is implemented as a
balanced binary tree – the functional programmer’s go-to choice
for logarithmic-time operations. However, before we consider how
the trees are balanced, we need to consider how they represent
discrete distributions in the first place; we save balancing concerns
for §3.4.

As distributions must be nonempty, we use a nonempty binary
tree that stores data – values in the distribution – at the leaves.
In addition, we must also store information about the weights of
each value: each location in the tree, leaf and (internal) node alike,
stores a weight. We maintain the invariant that the weight of a tree
or subtree is the total weight of every value in the corresponding
distribution. This means that the weight of a leaf is simply the
weight of the value it holds, and the weight of a node is the sum of
the weights of its children. Such a tree can be represented by the
following data type:

Ode on a Random Urn (Functional Pearl) Haskell’17, September 7-8, 2017, Oxford, UK

data Urn a -- a discrete distribution; abstract
type Weight = Word -- nonzero
class Monad m => MonadSample m -- provides randomness

singleton :: Weight -> a -> Urn a
fromList :: [(Weight,a)] -> Maybe (Urn a)

sample :: MonadSample m => Urn a -> m a
remove :: MonadSample m => Urn a -> m ((Weight,a), Maybe (Urn a))

insert :: Weight -> a -> Urn a -> Urn a
update :: MonadSample m => (Weight -> a -> (Weight,a)) -> Urn a -> m ((Weight,a), (Weight,a), Urn a)
replace :: MonadSample m => Weight -> a -> Urn a -> m ((Weight,a), Urn a)

size :: Urn a -> Word
weight :: Urn a -> Weight

Figure 3. The API for urns: the types, constructors, sampling functions, and updating functions.

-- Simple tree representation
Node 9 (Node 6 (Leaf 2 R)

(Leaf 4 G))
(Leaf 3 B)

9

(3, B)6

(4, G)(2, R)

-- An alternate grouping
Node 9 (Leaf 2 R)

(Node 7 (Leaf 4 G)
(Leaf 3 B))

9

7

(3, B)(4, G)

(2, R)

-- Order doesn’t matter
Node 9 (Node 5 (Leaf 2 R)

(Leaf 3 B))
(Leaf 4 G)

9

(4, G)5

(3, B)(2, R)

Figure 4. Three different tree representations of the distribution
{(2, R), (4, G), (3, B)}.

type Weight = Word

data Tree a = Node Weight (Tree a) (Tree a)
| Leaf Weight a

weight :: Tree a -> Weight

Our example distribution, {(2,R), (4,G), (3,B)}, can be repre-
sented as a Tree in multiple different ways by altering the grouping
or the ordering of values. Three possible tree representations of
this distribution are shown in Fig. 4.

The rationale behind storing the aggregate weights at the inter-
nal nodes comes from thinking about the buckets from §2. We can
think of each Node w l r as representing a single “super-bucket”
of size w, where the “super-bucket” spans the buckets of every value

21

12

5

(2, h)(3, g)

7

(5, f)(2, e)

i2 − 2

i1
9

4

(2, d)(2, c)

5

(1, b)(4, a)

i0 − 9

i0 = 12 ≥ 9

i1 = 3 < 7

i2 = 3 ≥ 2

i3 = 1

Figure 5.What happens when sampling from an urn. This exam-
ple looks up the index 12 in a tree representing the distribution
{(4, a), (1, b), (2, c), (2, d), (2, e), (5, f), (3, g), (2, h)}. The path taken
through the Tree is in bold red; the changes to the index ix at the
xth recursive call are in blue. As this shows, adjusting is only done
when recursing into the right-hand child of a node.

at the leaves. If the total range covered by this tree is [b,b +w), then
its two subtrees l and r split it into [b,b+wl) and [b+wl,b+wl+wr),
where wl = weight l, wr = weight r, and wl + wr = w by the
invariant on weights. An index i into this range falls in the left
super-bucket if i < b + wl, and the right super-bucket otherwise;
applying this recursively, we end up in the correct bucket, which is
to say at the correct leaf. This algorithm can be slightly simplified
by always adjusting the super-buckets to start at 0. This allows
every Tree to be considered in isolation, without any need to keep
track of the super-bucket’s base b; to do so, we simply adjust i if it
would fall in the right-hand bucket, subtracting wl. This leads to
the following Haskell implementation:

sample :: Tree a -> Index -> a
sample (Leaf _ a) _ = a
sample (Node w l r) i

| i < wl = sample l i
| otherwise = sample r (i - wl)
where wl = weight l

The result of running this algorithm on an 8-leaf Tree is presented
in Fig. 5.

Haskell’17, September 7-8, 2017, Oxford, UK Leonidas Lampropoulos, Antal Spector-Zabusky, and Kenneth Foner

3.3 Turning Over a New Leaf
The update and replace functions from §3.1 are similar to
sample, but they return a modified Urn in addition to the
randomly chosen value. We consider update first: given a function
upd :: Weight -> a -> (Weight,a) and an urn u, the call
update upd u randomly chooses a value a in the urn with some
weight w, applies upd w a to get the result (w',a'), and returns
a triple ((w,a), (w',a'), wt') consisting of the old weighted
value, the new weighted value, and the new Urn, which has had w
and a replaced by w' and a'. (We return both (w,a) and (w',a')
in case we need the new values, as this avoids recomputing them
when upd is expensive.)

The way that update uses an index to traverse a tree is the
same as sample. However, as updatemodifies the Tree, we need to
update the weights as we rebuild the tree on the way back up: every
weight above the updated leaf must be adjusted by the difference
w'-w.We do not need toworry about rebalancing, since the structure
of the Tree and the number of values it contains is unchanged.

update :: (Weight -> a -> (Weight,a)) -> Tree a
-> Index -> ((Weight,a), (Weight,a), Tree a)

update upd (Leaf w a) i =
let (w',a') = upd w a
in ((w,a), (w',a')

, Leaf w' a')
update upd (Node w l r) i =
| i < wl =

let (old, new, l') = update upd l i
in (old, new

, Node (w - fst old + fst new) l' r)
| otherwise =

let (old, new, r') = update upd r (i-wl)
in (old, new

, Node (w - fst old + fst new) l r')
where wl = weight l

The function replace w' a' is essentially the same as
update (_ _ -> (w',a')), so we elide its implementation; the
difference is that since w' and a' are statically known, we only
need to return a pair ((w,a), wt') containing the old weighted
value and the new urn.

3.4 A Balancing Act
As mentioned at the beginning of §3.2, if we want logarithmic
runtime for all our operations, we need to make sure our trees
stay balanced when we add or remove values from the distribution.
However, the Tree type presented thus far does not contain enough
information to stay balanced if we change the size or layout dynam-
ically. Because there is no natural ordering to the values contained
within an urn, using a self-balancing binary search tree such as
an AVL or red-black tree is unnecessarily complex and a poor fit
for the problem we wish to solve. Such an implementation would
force us to impose an ordering on the values contained in the urn,
and some values we frequently wish to store in an urn – such as
QuickCheck generators, which are wrappers around functions –
cannot be given an ordering at all.

The key insight to balancing Trees in the simplest way
is to realize that, unlike for binary search trees, order is
truly irrelevant; we first encountered this in Fig. 4. The ef-
ficiency of sample also does not depend on ordering, as
the only invariant we have imposed on our Trees is that

weight (Node w l r) == weight l + weight r. Thus, if we
always insert values at the second-deepest level of the tree until
we must start a new level, we will maintain the balance.

When we wish to insert a new value into the tree, we take some
path to get there, which involves going left or right at each Node. If
we always go in the opposite direction on each successive insertion,
we will distribute our updates evenly throughout the tree. We can
do this by storing a direction at each Node: either left (←) or right
(→). To decide where to insert, we recurse into the child we are
directed to, and toggle the direction.

This allows us to implement the self-balancing insertion func-
tion insert :: Weight -> a -> Tree a -> Tree a, where
insert w a inserts the value a into a distribution with weight w.
As we go down the tree, we add the to-be-inserted weight w to the
weight at every node we pass; to decide which way to go, all we
need to do is follow the directions.

It is easiest to see what this means by looking at how this ap-
proach iteratively builds up a new tree from a singleton distribution,
one insertion at a time; we present an example of this in Fig. 6. Each
successive tree has a new leaf at the location found by following
the arrows down from the root in the previous tree (on the right of
the old leaf), and all the arrows that were followed in that traversal
are flipped from said previous tree. We can see that this “evenly
distributes” new leaves, rather than filling them in from left to right.

3.5 Losing Direction
We can look at the insertion pattern shown in Fig. 6 and record the
directions we take, using L for left and R for right; every such path
ends with an R, as new leaves are added to the right of old ones.
The sequence of insertions we get is shown in the following table:

Inserting Path Inserting Path

(2, b) R (5, e) LLR
(3, c) LR (6, f) RLR
(4, d) RR (7, g) LRR

(8, h) RRR

The pattern of Ls and Rs is a familiar one: if L is 0 and R is 1, then
we can read any given path backwards as a binary number. Enumer-
ating our paths in this way counts from 110 = 12 through 710 = 1112.
This means that the path we must take to find a new insertion loca-
tion is given exactly by the binary representation of the size of the
Tree before insertion!

Thus, all we need beyond our original Tree type is a single Word
keeping track of the size, and we have all the balancing information
we need. It is this composite data type consisting of a size and a
Tree that we call an Urn:
data Urn a = Urn { size :: Word

, tree :: Tree a }

All the functions that we defined on Trees are lifted to Urns by
operating on the tree field.

This also saves space! A Tree holds the minimum amount of
information that we need to sample from a discrete distribution; if
we had to include directions in a Treewithn values, we would incur
O(n) overhead to store them.With an Urn, our space overhead, with
respect to an ordinary tree representation, is reduced to a single
machine word.

We have to change the insertion algorithm to use the size of the
urn to perform traversal instead of embedded directions. At every

Ode on a Random Urn (Functional Pearl) Haskell’17, September 7-8, 2017, Oxford, UK

(1, a) (3,←)

(2, b)(1, a)

(6,→)

(2, b)(4,←)

(3, c)(1, a)

(10,←)

(6,←)

(4, d)(2, b)

(4,←)

(3, c)(1, a)

(15,→)

(6,←)

(4, d)(2, b)

(9,→)

(3, c)(6,←)

(5, e)(1, a)

(21,←)

(12,→)

(4, d)(8,←)

(6, f)(2, b)

(9,→)

(3, c)(6,←)

(5, e)(1, a)

(28,→)

(12,→)

(4, d)(8,←)

(6, f)(2, b)

(16,←)

(10,←)

(7, g)(3, c)

(6,←)

(5, e)(1, a)

(36,←)

(20,←)

(12,←)

(8, h)(4, d)

(8,←)

(6, f)(2, b)

(16,←)

(10,←)

(7, g)(3, c)

(6,←)

(5, e)(1, a)

Figure 6. Iteratively constructing a directed tree, building up the distribution {(1, a), (2, b), (3, c), (4, d), (5, e), (6, f), (7, g), (8, h)} one value at
a time. The bold paths indicate where the next value will be inserted; the red leaves are the most-recently-inserted leaf in each tree.

step, the low bit of the given size is the direction to travel – if the
bit is 1, we go right, and if it is 0, we go left. In the recursive call,
we shift off the lowest bit and recurse, getting access to the next
lowest bit, which is the next direction in the path.3

insert :: Weight -> a -> Urn a -> Urn a
insert w' a' (Urn size tree) =

Urn (size+1) $ go size tree
where go _ (Leaf w a) =

Node (w+w') (Leaf w a) (Leaf w' a')
go path (WNode w l r)

| path `testBit` 0 =
WNode (w+w') l (go path' r)

| otherwise =
WNode (w+w') (go path' l) r

where path' = path `shiftR` 1

As we see in insert, binary numbers correspond to root-to-leaf
paths in an urn read backwards. In fact, for an urn of size n, all
binary numbers less than n correspond to valid paths; vice versa, all
paths to leaves correspond to binary numbers less than n. Moreover,
just like insert uses n as the path to the insertion point, we will
always be able to use this same n as the path to that location.

3.6 A Value Un-urned
Now that we have the definition of Urns, the final piece of func-
tionality we need to implement is deletion. In order to maintain
balance in our trees, we cannot remove values from arbitrary loca-
tions. There is precisely one node whose removal would leave the
tree compatible with further iterated insertion: the most recently
3Computing n `testBit` b determines whether the bth bit of n is set.

Haskell’17, September 7-8, 2017, Oxford, UK Leonidas Lampropoulos, Antal Spector-Zabusky, and Kenneth Foner

(2,R) (4,G) (3,B)

0 1 2 3 4 5 6 7 8

(2,R) (4,G) (3,B)

2 3 40 1

Figure 7.What happens to indices when uninserting a bucket: if
uninsert returns ((4,G), 2, Just ...), then the indices into
the subsequent B bucket must be shifted down.

inserted value. Removing this value would take us back to the pre-
vious, also-balanced tree.4 We call this operation uninsert, and we
can combine it with replace to implement remove: we uninsert
the most-recently-inserted weighted value, and then replace the
weighted value we want to removewith said uninserted weighted
value.

However, as they say, the devil is in the details. The first thing
we need to do is call uninsert to produce the value we need to
pass to replace, as well as a new urn. Since urns cannot be empty,
uninsert actually returns a Maybe (Urn a) – uninserting from
an Urn of size one produces Nothing. Moreover, if the result is
Nothing, we are done: there was only one possible value we could
have removed, so we must have removed it.

On the other hand, if the result is a Just, we encounter a prob-
lem: remove had as an argument an index i into the urn that we
had before calling uninsert, which means it cannot be used to
index into its result – some of the indices may have shifted during
uninsertion. We can see a visualization of what happens to the
indices after an uninsertion in Fig. 7. So how can we update i to
point to the correct place in the new urn? Again, looking at Fig. 7,
we can see that the indices that fall after the removed bucket must
be shifted down to fill in the uninserted bucket. We also have to
address the case where we were supposed to remove the uninserted
value; if i lay within the removed bucket, then we don’t in fact
need to call replace at all. This accounts for the extra w' indices
that are valid for the old urn but not the new one.

Thus, uninsert must not only return the weight and the value
that was deleted, but also enough information to completely identify
the removed bucket: its lower bound. The type of uninsert is
therefore
uninsert
:: Urn a -> ((Weight,a), Weight, Maybe (Urn a))

The implementation of uninsert is very similar to insert.
When inserting a value, we follow the path given by the bits of
size itself and insert a Leaf, updating all the parent weights in
the process; this produces an Urn of size size+1. In contrast, to
uninsert a value, we just need to follow the path given by the bits
of size-1 and remove the Leaf there, again updating internal
node weights to maintain the weight-sum invariant.

The bigger difference is that we also need to calculate the lower
bound of the bucket of the value we removed. If our tree is just a
leaf, Leaf w a, then the bucket for that leaf is just [0,w). If our
tree is a node, Node w l r, then the “super-bucket” for the whole

4Even if updates have happened in the meantime, recall that changes to the weights
do not affect the balance of the tree; only its leaf-node structure affects the balance.

tree is again [0,w), and the two subtrees have “super-buckets”
[0, weight l) and [weight l, w) (as we saw in §3.2). Therefore,
since we know which direction to recurse to find the target, we
know how to adjust the lower bound returned by the recursive call.
If we recursed to the left, then the lower bound is unchanged; if we
recursed to the right, then we need to add weight l to the lower
bound.

As promised, we can now combine uninsert with replace to
produce remove. This breaks down into the following three cases:
• If i < lb, then i lies before the removed bucket, so it pointed
to the same value in urn as it now points to in urn'; thus,
we can use the index i as-is when calling replace.
• If lb <= i < lb + w', then i was in the removed bucket,
so the uninserted item was the very item we had wanted to
remove; this means we can return the pair (old, Just u')
directly without calling replace.
• Finally, if lb + w' <= i, then i lies after the removed
bucket, so the value i points to has been relocated by
uninsert; we need to subtract off w' to get the new index
i-w'.

The Haskell implementation reflects all of these cases directly.
remove :: Urn a -> Index

-> ((Weight,a), Maybe (Urn a))
remove urn i =

let ((w',a'), lb, maybeUrn') = uninsert urn
in case maybeUrn' of

Nothing -> ((w',a'), Nothing)
Just urn'

| i < lb ->
Just <$> replace w' a' urn' i

| i < lb + w' ->
((w',a'), Just urn')

| otherwise ->
Just <$> replace w' a' urn' (i - w')

3.7 Building Up To (Almost) Perfection
There is only one more nontrivial function from our API that we
have not yet discussed: fromList.5 Having already defined insert,
we could define fromList in terms of it:
fromList :: [(Weight, a)] -> Maybe (Urn a)
fromList ((w,a):was) =

Just $ foldr (uncurry insert) (singleton w a) was
fromList [] = Nothing

Most of the time, this implementation will be fine; it runs in
linearithmic – O(n logn) – time, but since each urn will only be
initialized once, this overhead is not a problem in practice. Still, we
can do better.

The fromList function constructs an urn all at once. Any binary
tree with n leaves, such as an Urn with n values, also has exactly
n− 1 internal nodes. This means that if we could build an Urnwhile
spending only constant effort at each node and leaf, we would have
a construction algorithm which runs in linear time with respect to
the length of the list.

The fold-based algorithm above constructs an urn by iteratively
rebuilding it, traversing the tree from root to leaf and modifying
its weights and values. Because any such traversal must cost at
least logarithmic time, any top-down algorithm must take at least

5We elide the implementation of singleton.

Ode on a Random Urn (Functional Pearl) Haskell’17, September 7-8, 2017, Oxford, UK

linearithmic time. Instead, to construct an urn in linear time, we
need to build it from the bottom-up, starting from the leaves.

A first useful observation is that all urns of a given size have
an identical shape – they will only differ in their weights and leaf
values. As a result, our construction algorithm need only compute
the correct shape for urns with size equal to the length of the input
list, summing weights to fill the internal nodes as it goes.

What, then, is the shape of an urn of a given size? We’ve seen, in
Fig. 6, how this shape evolves as successive elements are inserted.
At all times, we maintain the invariant that an urn is almost perfect
– that is, that the difference in depth between any two leaves is
at most one.6 This means that the shape of an urn is restricted to
being composed of a perfect tree with an additional “fringe” of pairs
of leaves dangling beneath the last fully perfect row of that tree.

Computing an urn’s shape boils down to computing the depth
of the deepest full level of the tree, and the positions of all the
dangling pairs of leaves beneath that level. Were there no such
leaves – that is, were the list size a power of two – then we could
build the tree in linear time by simple recursion. We present the
algorithm parameterized over an arbitrary tree type t with node
and leaf construction functions.
perfect :: (t -> t -> t) -> (a -> t)

-> [a] -> t
perfect node leaf values =
evalState values $ go perfectDepth
where

size = length values
perfectDepth = floorLog2 size

go 0 = do
[a] <- consume 1
pure $ leaf a

go depth =
node <$> go (depth - 1)

<*> go (depth - 1)

consume :: Word -> State [a] [a]
consume n = state $ splitAt n

This computation is Stateful, storing a list of values that will
become leaves; the consume operation removes and returns the first
n elements of that list. The structure of the recursion in perfect
looks like the desired tree, but we still only consume elements
from the list one at a time. We recurse on the depth of the desired
perfect tree; when this hits zero, we consume a single element from
the input list and convert it into a leaf. At non-zero depths, we
simply recurse twice and produce a node whose children are the
two resulting perfect trees.

Urns, however, are merely almost perfect. When the input list is
of size 2d +r , where 0 < r < 2d , we can handle the extra r elements
by sometimes consuming two elements at once and building a node
with two leaves as children instead of consuming one element and
building a leaf. The tricky part is figuring out when to consume two
elements. For example, if we wanted to build a complete tree, we
could consume two elements the first r times, and then one element
(as before) the remaining 2d − r times. However, the urns built up
by fromList will not be complete; they must have the shape that
would have been produced by repeated insertion.
6This is weaker than the definition of a complete tree, which requires in addition that
all leaves on the deepest level are as far left as possible.

What we need to determine, then, is whether we consume 1 or 2
values with the ith consume action. For concreteness, consider Fig. 8
which depicts an almost-perfect urn of size 11 and the sequence
of consume actions that created it. Recall the invariant from the
end of §3.5: every root-to-leaf path in this urn, read as a string of
bits, corresponds to the reverse of a binary number less than 11;
at the same time, every binary number less than 11 corresponds
to a root-to-leaf path. We only perform a consume 2 action when
the leaves it produces satisfy this invariant. Let’s focus on the node
containing d and e, which is produced by the third consume action
(with index i = 2). These two leaves have paths which correspond
to 00102 = 210 (for d) and 10102 = 1010 (for e). This was allowed
to be a consume 2 because both 2 and 10 are indeed less than 11.
An urn of size 10, on the other hand, would instead contain a leaf
(not a node) at this point.

This algorithm is reflected in the almostPerfect function below.
The local variable size is the length of the input list, and is equal to
2^perfectDepth + remainder. Calling reverseBits count n
reverses the lowest count bits of the word n. Finally, we augment
our state with a counter which is incremented every time consume
is called, and use the index action to read its value.

almostPerfect :: (t -> t -> t) -> (a -> t)
-> [a] -> t

almostPerfect node leaf values =
evalState (0,values) $ go perfectDepth
where

size = length values
perfectDepth = floorLog2 size
remainder = size - 2^perfectDepth

go 0 = do
ix <- index -- 0 <= ix < 2^perfectDepth
if reverseBits perfectDepth ix < remainder

then do [l,r] <- consume 2
pure $ leaf l `node` leaf r

else do [a] <- consume 1
pure $ leaf a

go depth =
node <$> go (depth - 1)

<*> go (depth - 1)

index :: State (Word, [a]) Word
consume :: Word -> State (Word, [a]) [a]

In the code above, we decide whether to consume 2 or 1 by
checking if reverseBits perfectDepth ix < remainder, where
ix is the index of the current consume action. This index is a path
to the leaf or node that this action will produce. The check we de-
scribed before would correspond to checking that both the reversals
of ix · 0 and ix ·1 are both less than size. The first check is always
trivially true, as ix is less than 2^perfectDepth (which is also why
our invariant is automatically satisfied in the consume 1 case). For
the ix · 1 case, the trailing 1 takes on a value of 2^perfectDepth.
We can thus compare the reversal of ix without that to remainder,
which is the number of values beyond 2^perfectDepth.

This function does indeed run in linear time: we access each list
element once, and we perform a constant amount of work to create
each leaf and node.

Haskell’17, September 7-8, 2017, Oxford, UK Leonidas Lampropoulos, Antal Spector-Zabusky, and Kenneth Foner

0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

kj,i,h,g,f,e,d,

0 1

0

c,b,a,

1

0

[]

Figure 8.An almost-perfect tree in the shape of a size-11 urn, anno-
tated with the details of our construction algorithm. The leaves are
also the input list to the algorithm. The boxes indicate consumption
steps: a double-lined box is a consume 2 step, and a single-lined box
is a consume 1 step. The input list is consumed in order, one step
at a time, from left to right; the box with the elements consumed at
step i is annotated with i in base 10 and base 2. We also highlight
the paths taken to reach into the second input chunk (i = 2).

4 Applications and Evaluation
Now that we have defined urns, we explore their applications to
random testing and benchmark their performance against existing
solutions from the literature.

4.1 An Alternative frequency Combinator
As mentioned in the introduction, the most expressive QuickCheck
combinator, frequency, allows the user to combine different gener-
ators of the same type by choosing one of them based on a discrete
distribution. Its implementation is presented in Fig. 9. Every time
frequency is called, it calculates the sum tot of the weight com-
ponents of the input list, generates a random number between 1
and tot, and indexes into the list linearly. For many applications,
the input distribution has only a few values, so this approach is
reasonably fast. However, the linear traversal of the list can cause
unnecessary overheads for medium-to-large inputs.

We propose a new combinator frequency' that takes an
Urn (Gen a) as input (where Gen is QuickCheck’s type for
random generators), using the random sample function from Fig. 3.
frequency' :: MonadSample m => Urn (m a) -> m a
frequency' = join . sample

Its functionality is identical to QuickCheck’s frequency: we gen-
erate a number between zero and the total weight of the urn (Urns
are 0-indexed where frequency is 1-indexed) and index into our
structure appropriately. The use of urns provides a lot of flexibility,
allowing us to both use the very expressive combinator library of
QuickCheck and dynamically change the distributions involved
efficiently, as we will see in the rest of this section. Moreover, even
in the static case – i.e., the case where we do not modify the distri-
bution – we obtain better performance.

In 2012, Hriţcu et al. [7] explored different generation meth-
ods for information flow control stack machines, focusing for the
most part on generating “good” instruction sequences; that is, se-
quences that lead to longer executions. The instructions for their

frequency :: [(Int, Gen a)] -> Gen a
frequency [] = error "... empty list"
frequency xs0 = choose (1, tot) >>= (`pick` xs0)
where
tot = sum (map fst xs0)

pick n ((k,x):xs)
| n <= k = x
| otherwise = pick (n-k) xs

pick _ _ = error "... empty list"

Figure 9. The exact implementation of frequency from Quick-
Check 2.8.2 (with abbreviated string literals) [2, 15].

simple machine are: Push and Pop, which manipulate the stack;
Add, which sums the top two items on the stack; Load and Store,
which are memory operations; Jump, Call and Return, which are
control flow operations; Halt, which signifies a successful termina-
tion; and Noop, which does nothing. The frequency combinator is
featured prominently in their development: for every generation
strategy they explore other than the very first, naïve, one, individual
instructions are generated using frequency.

Benchmarking We evaluated the performance of Urns in the
static case by testing one of Hriţcu et al.’s early generation strategies
(which they call genWeighted), which crucially uses frequency to
increase the probability of Halt and Push instructions, skewing
the distribution of programs towards those that terminate (Halt)
and do not crash (because they have a big enough stack to avoid
underflows). We randomly generated 500 instructions in the form
of instruction lists of size 10, and benchmarked the generation time
using Criterion [11]. In this benchmark, sampling from Urns is
2.64× faster than using frequency.

To further evaluate Urns, we wanted to identify the cutoff point
(in terms of input list size) where using an Urn for static sam-
pling becomes more efficient. We used Criterion again to bench-
mark sampling uniformly from the first n integers (where n ranged
from 1 through 10 000). For each n, we generated numbers using
frequency and using Urns; we ran each approach 10 000 times with
QuickCheck’s sample' (which generates 11 values using IO), and
measured the performance. The results appear in Fig. 10. There
was no cutoff: for small distributions (n ≤ 20), the performance
of Urns and lists are the same within the margin of error; and for
larger distributions, Urns quickly outpace lists. The run time of
frequency, as expected, scales linearly with the size of the input
list, requiring more than 3 seconds to complete when n = 10 000;
on the other hand, the time taken to sample from an Urn grows at
a much slower rate, rising logarithmically from roughly 50ms for
small inputs to roughly 80ms for the larger ones. This logarithmic
curve can be better seen on the right-hand side of Fig. 10, where
we only plot the time needed to sample from urns.7

4.2 An Efficient backtrack Combinator
The real benefit of using urns, however, is not just a slight perfor-
mance boost in the static case. When we wish to dynamically alter
the input distribution, urns greatly improve the performance and

7All the benchmarks in this paper were run on a Dell XPS15 laptop with a 2.3GHz
Intel Core i7-4712HQ with 16GB of RAM running Ubuntu 16.04.2 LTS; they were
compiled with GHC 8.0.2 using -O2 -funbox-strict-fields.

Ode on a Random Urn (Functional Pearl) Haskell’17, September 7-8, 2017, Oxford, UK

Figure 10. Left: Performance of frequency (blue, above) vs. Urns (red, below). Right: Zoomed-in performance of Urns.

conciseness of our code. This desire to update a distribution that
is being sampled from often arises in random testing when some
generators may fail to produce a value (i.e., return Nothing). If we
sample from a generator and the generated value is not a Just, we
must backtrack and try again.

As an example, consider the inspiring work of Pałka et al. [13]
on generation of well-typed lambda terms. To generate well-typed
terms, the authors use the typing rules of simply typed lambda
calculus as generators. They assign an empirically-chosen weight
to each rule; then, to generate a term with type T, they pick a
rule whose conclusion has type T at random based on the weights.
This rule may then have premises, which they attempt to satisfy
recursively in the same way. For example, to generate a term of
type Int, we could either use some Int constant like 0 or 1; some
variable x from our environment; or a function application f e'
where f :: T' -> T and e' :: T' for any type T'.

However, the premises of these typing judgments may not be
satisfiable. For instance, there might not be any Int variables in the
environment. Worse, when using the application rules, T' is chosen
arbitrarily, but there is no guarantee that we can generate a term
of type T' within the constraints of the generation process. When
a typing judgement is not satisfiable, Pałka et al. resort to back-
tracking: they randomly select the next applicable rule. When the
remaining rules are exhausted, generation fails and they backtrack
at some higher level if possible.

The way Pałka et al. choose a rule randomly from a weighted
distribution is by permuting the entire list using a variant of per-
mutation-by-sorting shown in Fig. 11, and then iterating through
this permuted list as necessary. Standard permutation-by-sorting
shuffles a list by generating a random number for each list item,
and sorting the list by comparing these numbers.8

Pałka et al. extend permutation-by-sorting to take (positive, in-
tegral) weightsw into account by generatingw numbers for each

8One downside of permutation-by-sorting is that it only guarantees a fair shuffle if
the generated comparison keys are unique. This is typically avoided by using a fair
shuffling algorithm like Fisher-Yates [3]; however, this algorithm does not have a
natural extension that takes weights into account. Thankfully, the unfairness is not a
major concern, since the weights in random testing are typically tuned based on the
observed behavior.

-- Weights must be positive!
permuteWeighted :: [(Int, a)] -> Gen [a]
permuteWeighted xs = do

v <- mapM (\n -> replicateM n arbitrary >>=
\ns -> return $ minimum ns)

(map fst xs) :: Gen [Int]
let p = map snd $ sortBy (comparing fst)

$ zip v [0..]
return $ map ((map snd xs)!!) p
where l = length xs

Figure 11. The implementation of permuteWeighted from Pałka et
al. [13] (reformatted).

item in the list and picking the minimum as the key for sorting.
Intuitively, this approach simulates exploding aw-weighted item
intow identical copies, using permutation by sorting to shuffle the
exploded list and then keeping the first occurrence of each item in
the result.

The algorithm in Fig. 11 has several inefficiencies; apart from
implementation details (the use of !! could be replaced by zipping
with xs directly), there are two more fundamental problems. First
and foremost, the complexity of the algorithm is pseudo-polynomial;
given the weightswi , the algorithm runs inO(n logn +

∑
i wi) time,

since we generatewi keys for every item before sorting. Secondly,
we only need the later items from the shuffled list if we actually
backtrack. Thanks to laziness, we may be able to avoid spending
the full O(n logn) time to permute the list, but this depends on the
precise sorting algorithm used.

We can avoid completely shuffling a list of generators by putting
them in an Urn, using the backtrack combinator:

backtrack :: Urn (Gen (Maybe a)) -> Gen (Maybe a)
backtrack urn = do

((_w,g), mUrn') <- remove urn
ma <- g
case ma of

Just a -> pure $ Just a
Nothing -> maybe (pure Nothing) backtrack mUrn'

Haskell’17, September 7-8, 2017, Oxford, UK Leonidas Lampropoulos, Antal Spector-Zabusky, and Kenneth Foner

In backtrack, we remove a generator from the urn, sample from it,
and test to see if we got a result. If so, we Just return that result;
otherwise, we repeat this process until the urn is empty. Since each
remove operation only takesO(logn) time, this combinator runs in
O(n logn) time (with respect to the running time of the generators).

A similar construct exists in QuickChick [14], the Coq implemen-
tation of QuickCheck, but is based on lists; backtrack could be used
to make this more efficient. In general, analogous situations arise
in many other testing applications, such as in explicitly weighted
narrowing approaches (e.g., Luck [9]). At a more abstract level, urns
can be used to efficiently tune randomized search algorithms that
choose between prioritized possibilities.

Benchmarking To evaluate urns in this context, we replaced
permuteWeighted in Pałka et al.’s code [12] with a variation using
urns, which inlines the aforementioned backtrack combinator:
permuteWeighted :: [(Int, a)] -> Gen [a]
permuteWeighted x =

let Just u = Urn.fromList
$ map (first fromIntegral) x

aux u = do
(w, a, mu) <- Urn.remove u
case mu of

Just u' -> (a:) <$> aux u'
_ -> pure [a]

in aux u

We benchmarked the generation time of 11 Haskell terms (as
many as produced by QuickCheck’s sample'), without altering
anything else in their code. Criterion reported a 31.52ms expected
time (1.8ms variance) for the original code; on the other hand, the
urn-based version took 14.95ms (1.6ms variance).

While this 2.1× speedup is a victory in its own right, it
doesn’t measure the real difference between the two variants of
permuteWeighted. For one, the permutation algorithm is clearly
not the bottleneck amongst 1600 lines of complicated Haskell
dealing with polymorphic unification. More importantly, because
the Pałka variant of permuteWeighted has quasi-polynomial
running time, it is not general purpose: it is only efficient if all the
weights are small. On the other hand, the urn-based variant can
be used as-is in any development. Indeed, if we were to directly
benchmark the two variants, we could artificially inflate the
difference as much as we wanted by choosing arbitrarily large
weights.

5 Related Work
5.1 Alternative Representations of Discrete Distributions
The literature contains several extant representations for dis-
crete distributions. For example, the QuickCheck [2, 15] and
random-fu [16] packages both provide support for sampling from
such distributions, using lists and arrays, respectively. For each
of these approaches, we present in Fig. 12 its asymptotic run
time for initialization and for performing the four operations we
want to support, as compared with the run time of an urn for
the same operation. The table highlights the trade-offs between
these data structures: urns, like arrays, cost linear time to create,
and take logarithmic time to sample from; on the other hand,
lists are simple and so benefit from constant-time initialization
(id) and insertion ((:)), but require linear time when sampling.
Only urns, however, are designed to support the three dynamic

Operation Lists Cumulative
arrays

Urns

Create from list O(1) O(n) O(n)
Sample O(n) O(logn) O(logn)
Total weight O(n) O(1) O(1)

Insert O(1) O(n) O(logn)
Remove O(n) O(n) O(logn)
Update/Replace O(n) O(n) O(logn)

Figure 12. Comparison of runtimes for operations on different
functional distribution data structures; n is the number of values in
the distribution.

update operations, and are the only structure to achieve consistent
logarithmic performance.

The basic idea behind sampling from a discrete distribution was
discussed in §2: given the distribution {(w1,x1), . . . , (wn ,xn)}, we
break the range [0,

∑n
i=1wi) inton subranges ([0,w1), [w1,w1+w2),

etc.) and generate a randomnumber r from the total range; the index
of the subrange r belongs to is the index of the desired value. Urns,
QuickCheck and random-fu follow the same high-level approach,
but use different data structure representations.

QuickCheck Perhaps the simplest representation of a discrete
distribution over values of type a is [(Weight,a)] – a list of values
paired with their weights, as discussed in §1. This is the representa-
tion used by QuickCheck’s frequency combinator (Fig. 9) [2, 15],
and is considered in column 1 of Fig. 12.9

This representation is very simple, uses only standard data types,
and requires only simple, local invariants on the input data: that
the list is nonempty and that its weights aren’t all 0. However, as
we saw in §4.1, while this simple representation works for small
cases it has some obvious inefficiencies: recalculation of the total
weight and worst-case linear traversal to generate samples.

On the plus side, inserting a new value into the distribution is
constant-time: if we want to add the new value x' with weight w'
to the distribution d, we can simply cons them onto the front to
produce the new distribution (w',x'):d. Because all the invariants
are local, no other computation is needed. Other modifications –
deleting a value, replacing a value, or updating the weight of a
value – take linear time in the worst case, however, as modifying
the structure of a linked list always does.

random-fu The random-fu package [16] uses a similar rep-
resentation for discrete distributions – also called categorical
distributions – in its Data.Random.Distribution.Categorical.
Categorical type. However, it instead uses an array (specifically,
a Vector from the vector package [5]) and pairs values with their
cumulative weights: the distribution

{(w0,x0), (w1,x1), . . . , (wn ,xn)}

becomes the array
[(w0,x0), (w0+w1,x1), ..., (w0+w1+...+wn,xn)]

This representation is considered in column 2 of Fig. 12. In this
regime, our example urn becomes [(2,R), (6,G), (9,B)]. Now,
9The frequency function actually has type [(Int, Gen a)] -> Gen a, as discussed
in §4.1, so it deals with a “distribution over distributions”; however, all the representa-
tions function equally well holding as and Gen as, so we elide this extra detail.

Ode on a Random Urn (Functional Pearl) Haskell’17, September 7-8, 2017, Oxford, UK

the total weight is stored in the last position in the vector – ac-
cessible in constant time – and we can use binary search to find
which bucket an element of [0, total) belongs to in logarithmic
time. This works because each position in the vector stores the
upper bound on its bucket, which is what the index needs to be
compared against.

As it is not a design goal of the library, random-fu itself does not
expose any operations for dynamic updates. Nevertheless, we can
consider how this representation would work if we were to extend
it to support them. As it happens, this representation requires
linear time for all updates. For delete, update, and replace, this is
independent of the runtime of the array operations; since the array
stores cumulative weights, modifying any weight in the middle of
the array requires modifying all subsequent weights as well. To
insert a value, we can add a new value to the end of the array
without the need to update any other weights; however, because
our arrays are immutable, this still requires copying the entire
array and thus takes linear time. If our distribution were mutable
(in ST or IO), we could get amortized constant-time append, and
thus improve the efficiency of insertion (but, due to the cumulative
weights, not remove, update, or replace).

5.2 Alternative Tree-Based Structures
Urns are reminiscent of other data structures based on complete
binary trees: certain variants of heaps store a tree linearized into
an array, with the children of node i at indices 2i + 1 and 2i + 2
(using 0-indexing). If we always fill the array from left to right –
taking care to convert leaves into nodes when necessary – then
we will always have a balanced tree. However, as with all array-
based representations, updates in a purely functional setting require
copying the entire array, and so cost O(n); we get no sharing at
all. Urns provide an elegant, purely functional alternative, filling
a very real need in the community. Additionally, since urns are
immutable trees with no important laziness properties, they may
be used in a persistent context with the same performance as when
used ephemerally. That is to say, reverting to any previous state of
an urn costs nothing.

In the functional setting, there already exist self-balancing data
structures like red-black trees and AVL trees. However, these data
structures maintain complicated invariants, and are notoriously
difficult to get (and prove) correct [1]. Moreover, QuickCheck gen-
erators, one of the main applications of urns, cannot be given an
Ord structure: they are implemented as Haskell functions. Since
urns do not maintain a specific arrangement of their values, they
can contain generators, as well as arbitrary functions, IO actions,
or other objects without imposing any constraints.

Finally, Okasaki’s binary random-access lists (BRALs) [10] – and
similar structures based on numeric representations – have an
indexing scheme that is very similar to the one urns use when
inserting new elements. Both BRALs and urns take an index and
repeatedly use its least-significant bit to traverse the tree. The differ-
ence is that BRALs are designed to allow efficient access by index;
urns only use indexing when inserting and uninserting elements.
The sampling process is instead based on weights, which have no
analog in BRALs.We could emulate this sampling behavior by using
the same trick that Pałka et al. use in permuteWeighted [13] (see
§4.2): when inserting an element with weightw , insertw copies of
it into a BRAL. However, this takes pseudo-polynomial time and

space; it also doesn’t support any of the urn operations, such as
remove, which look at all those copies at once.

6 Conclusion and Future Work
In this paper we presented the urn, a simple tree-based data struc-
ture that allows for sampling from and updating discrete distribu-
tions with logarithmic performance in the worst case, and demon-
strated its usefulness in existing random testing applications from
the literature.

Looking to the future, a natural question is to optimize instead
for expected case performance. For example, suppose we had the
distribution {(1 000 000,R), (2,G), (2,B)}. In this case, we will pick
R 99.9996 % of the time, so it would be convenient if R were stored
as high up as possible in the tree, even if this pushesG and B deeper;
however, our implementation of Urns will make sure all values are
equally deep. If we were to locate values in the internal tree of an
urn according to the length of their Huffman code [8], the most
heavily weighted values would take the fewest steps to reach, and
thus the least time to generate. Investigating the possibility of an
imbalanced urn-like data structure that allows for better expected
case performance could yield an even greater efficiency boost in
many random testing applications.

Another possible direction would be to try wider tree represen-
tations, similar to those used in Clojure [6]. If we index into 2n -ary
trees using a base-2n representation, we could decrease the con-
stant factor associated with the number of steps required to reach
an value in the urn. This could further enhance the efficiency of
the structure.

Acknowledgments
We are grateful to Benjamin Pierce, Cătălin Hriţcu, George
Karachalias, Christine Rizkallah, Alex Roederer, Nikos Vasilakis,
Jennifer Paykin, Robert Rand, the entirety of the Penn PL Club,
and the anonymous reviewers for their helpful comments. This
work was supported by NSF award #1421243, Random Testing for
Language Design, NSF award #1521523, Expeditions in Computing:
The Science of Deep Specification, NSF award #1319880, Rich
Type Inference for Functional Programming, and NSF award
#1218002, Beyond Algebraic Data Types: Combinatorial Species and
Mathematically-Structured Programming.

References
[1] A. Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduction

to the Coq Proof Assistant. MIT Press, 2013.
[2] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of

Haskell programs. In 5th ACM SIGPLAN International Conference on Functional
Programming (ICFP). 2000.

[3] R. Durstenfeld. Algorithm 235: Random permutation. Commun. ACM, 7(7):420–,
1964.

[4] C. Gibbard, B. Yorgey, et al. MonadRandom: Random-number generation monad.
http://hackage.haskell.org/package/MonadRandom-0.4.2.3, 2016.

[5] Haskell Libraries Team and R. Leshchinskiy. vector: Efficient arrays. http:
//hackage.haskell.org/package/vector-0.11.0.0, 2015.

[6] R. Hickey. The Clojure programming language. http://clojure.org, 2012.
[7] C. Hriţcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis, A. Azevedo

de Amorim, and L. Lampropoulos. Testing noninterference, quickly. In 18th ACM
SIGPLAN International Conference on Functional Programming (ICFP). 2013.

[8] D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[9] L. Lampropoulos, D. Gallois-Wong, C. Hritcu, J. Hughes, B. C. Pierce, and L. Xia.
Beginner’s Luck: a language for property-based generators. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, 2017.

http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://doi.acm.org/10.1145/364520.364540
http://hackage.haskell.org/package/MonadRandom-0.4.2.3
http://hackage.haskell.org/package/vector-0.11.0.0
http://hackage.haskell.org/package/vector-0.11.0.0
http://clojure.org
http://prosecco.gforge.inria.fr/personal/hritcu/publications/testing-noninterference-icfp2013.pdf
http://dl.acm.org/citation.cfm?id=3009868

Haskell’17, September 7-8, 2017, Oxford, UK Leonidas Lampropoulos, Antal Spector-Zabusky, and Kenneth Foner

[10] C. Okasaki. Purely Functional Data Structures. Cambridge University Press, New
York, NY, USA, 1998.

[11] B. O’Sullivan. Criterion: a Haskell microbenchmarking library. http://www.
serpentine.com/criterion/, 2014.

[12] M. H. Pałka. Testing an optimising compiler by generating random lambda terms.
http://www.cse.chalmers.se/~palka/testingcompiler/.

[13] M. H. Pałka, K. Claessen, A. Russo, and J. Hughes. Testing an optimising compiler
by generating random lambda terms. In Proceedings of the 6th International
Workshop on Automation of Software Test. 2011.

[14] Z. Paraskevopoulou, C. Hriţcu, M. Dénès, L. Lampropoulos, and B. C. Pierce.
Foundational property-based testing. In C. Urban and X. Zhang, editors, 6th
International Conference on Interactive Theorem Proving (ITP). 2015.

[15] QuickCheck developers, N. Smallbone, B. Bringert, and K. Claessen. QuickCheck:
Automatic testing of Haskell programs. http://hackage.haskell.org/package/
QuickCheck-2.8.2, 2016.

[16] D. Steinitz and J. Cook. random-fu: Random number generation. http://hackage.
haskell.org/package/random-fu-0.2.6.2, 2015.

http://www.serpentine.com/criterion/
http://www.serpentine.com/criterion/
http://www.cse.chalmers.se/~palka/testingcompiler/
http://doi.acm.org/10.1145/1982595.1982615
http://doi.acm.org/10.1145/1982595.1982615
http://prosecco.gforge.inria.fr/personal/hritcu/publications/foundational-pbt.pdf
http://hackage.haskell.org/package/QuickCheck-2.8.2
http://hackage.haskell.org/package/QuickCheck-2.8.2
http://hackage.haskell.org/package/random-fu-0.2.6.2
http://hackage.haskell.org/package/random-fu-0.2.6.2

	Abstract
	1 Introduction
	2 Sampling Discrete Distributions
	3 The Urn Data Structure
	3.1 The Urn API
	3.2 A Weighty Matter
	3.3 Turning Over a New Leaf
	3.4 A Balancing Act
	3.5 Losing Direction
	3.6 A Value Un-urned
	3.7 Building Up To (Almost) Perfection

	4 Applications and Evaluation
	4.1 An Alternative frequency Combinator
	4.2 An Efficient backtrack Combinator

	5 Related Work
	5.1 Alternative Representations of Discrete Distributions
	5.2 Alternative Tree-Based Structures

	6 Conclusion and Future Work
	References

